Search Results

Search found 94767 results on 3791 pages for 'code style'.

Page 1046/3791 | < Previous Page | 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053  | Next Page >

  • Help with Design for Vacation Tracking System (C#/.NET/Access/WebServices/SOA/Excel) [closed]

    - by Aaronaught
    I have been tasked with developing a system for tracking our company's paid time-off (vacation, sick days, etc.) At the moment we are using an Excel spreadsheet on a shared network drive, and it works pretty well, but we are concerned that we won't be able to "trust" employees forever and sometimes we run into locking issues when two people try to open the spreadsheet at once. So we are trying to build something a little more robust. I would like some input on this design in terms of maintainability, scalability, extensibility, etc. It's a pretty simple workflow we need to represent right now: I started with a basic MS Access schema like this: Employees (EmpID int, EmpName varchar(50), AllowedDays int) Vacations (VacationID int, EmpID int, BeginDate datetime, EndDate datetime) But we don't want to spend a lot of time building a schema and database like this and have to change it later, so I think I am going to go with something that will be easier to expand through configuration. Right now the vacation table has this schema: Vacations (VacationID int, PropName varchar(50), PropValue varchar(50)) And the table will be populated with data like this: VacationID | PropName | PropValue -----------+--------------+------------------ 1 | EmpID | 4 1 | EmpName | James Jones 1 | Reason | Vacation 1 | BeginDate | 2/24/2010 1 | EndDate | 2/30/2010 1 | Destination | Spectate Swamp 2 | ... | ... I think this is a pretty good, extensible design, we can easily add new properties to the vacation like the destination or maybe approval status, etc. I wasn't too sure how to go about managing the database of valid properties, I thought of putting them in a separate PropNames table but it gets complicated to manage all the different data types and people say that you shouldn't put CLR type names into a SQL database, so I decided to use XML instead, here is the schema: <VacationProperties> <PropertyNames>EmpID,EmpName,Reason,BeginDate,EndDate,Destination</PropertyNames> <PropertyTypes>System.Int32,System.String,System.String,System.DateTime,System.DateTime,System.String</PropertyTypes> <PropertiesRequired>true,true,false,true,true,false</PropertiesRequired> </VacationProperties> I might need more fields than that, I'm not completely sure. I'm parsing the XML like this (would like some feedback on the parsing code): string xml = File.ReadAllText("properties.xml"); Match m = Regex.Match(xml, "<(PropertyNames)>(.*?)</PropertyNames>"; string[] pn = m.Value.Split(','); // do the same for PropertyTypes, PropertiesRequired Then I use the following code to persist configuration changes to the database: string sql = "DROP TABLE VacationProperties"; sql = sql + " CREATE TABLE VacationProperties "; sql = sql + "(PropertyName varchar(100), PropertyType varchar(100) "; sql = sql + "IsRequired varchar(100))"; for (int i = 0; i < pn.Length; i++) { sql = sql + " INSERT VacationProperties VALUES (" + pn[i] + "," + pt[i] + "," + pv[i] + ")"; } // GlobalConnection is a singleton new SqlCommand(sql, GlobalConnection.Instance).ExecuteReader(); So far so good, but after a few days of this I then realized that a lot of this was just a more specific kind of a generic workflow which could be further abstracted, and instead of writing all of this boilerplate plumbing code I could just come up with a workflow and plug it into a workflow engine like Windows Workflow Foundation and have the users configure it: In order to support routing these configurations throw the workflow system, it seemed natural to implement generic XML Web Services for this instead of just using an XML file as above. I've used this code to implement the Web Services: public class VacationConfigurationService : WebService { [WebMethod] public void UpdateConfiguration(string xml) { // Above code goes here } } Which was pretty easy, although I'm still working on a way to validate that XML against some kind of schema as there's no error-checking yet. I also created a few different services for other operations like VacationSubmissionService, VacationReportService, VacationDataService, VacationAuthenticationService, etc. The whole Service Oriented Architecture looks like this: And because the workflow itself might change, I have been working on a way to integrate the WF workflow system with MS Visio, which everybody at the office already knows how to use so they could make changes pretty easily. We have a diagram that looks like the following (it's kind of hard to read but the main items are Activities, Authenticators, Validators, Transformers, Processors, and Data Connections, they're all analogous to the services in the SOA diagram above). The requirements for this system are: (Note - I don't control these, they were given to me by management) Main workflow must interface with Excel spreadsheet, probably through VBA macros (to ease the transition to the new system) Alerts should integrate with MS Outlook, Lotus Notes, and SMS (text messages). We also want to interface it with the company Voice Mail system but that is not a "hard" requirement. Performance requirements: Must handle 250,000 Transactions Per Second Should be able to handle up to 20,000 employees (right now we have 3) 99.99% uptime ("four nines") expected Must be secure against outside hacking, but users cannot be required to enter a username/password. Platforms: Must support Windows XP/Vista/7, Linux, iPhone, Blackberry, DOS 2.0, VAX, IRIX, PDP-11, Apple IIc. Time to complete: 6 to 8 weeks. My questions are: Is this a good design for the system so far? Am I using all of the recommended best practices for these technologies? How do I integrate the Visio diagram above with the Windows Workflow Foundation to call the ConfigurationService and persist workflow changes? Am I missing any important components? Will this be extensible enough to support any scenario via end-user configuration? Will the system scale to the above performance requirements? Will we need any expensive hardware to run it? Are there any "gotchas" I should know about with respect to cross-platform compatibility? For example would it be difficult to convert this to an iPhone app? How long would you expect this to take? (We've dedicated 1 week for testing so I'm thinking maybe 5 weeks?) Many thanks for your advices, Aaron

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • What’s new in ASP.NET 4.0: Core Features

    - by Rick Strahl
    Microsoft released the .NET Runtime 4.0 and with it comes a brand spanking new version of ASP.NET – version 4.0 – which provides an incremental set of improvements to an already powerful platform. .NET 4.0 is a full release of the .NET Framework, unlike version 3.5, which was merely a set of library updates on top of the .NET Framework version 2.0. Because of this full framework revision, there has been a welcome bit of consolidation of assemblies and configuration settings. The full runtime version change to 4.0 also means that you have to explicitly pick version 4.0 of the runtime when you create a new Application Pool in IIS, unlike .NET 3.5, which actually requires version 2.0 of the runtime. In this first of two parts I'll take a look at some of the changes in the core ASP.NET runtime. In the next edition I'll go over improvements in Web Forms and Visual Studio. Core Engine Features Most of the high profile improvements in ASP.NET have to do with Web Forms, but there are a few gems in the core runtime that should make life easier for ASP.NET developers. The following list describes some of the things I've found useful among the new features. Clean web.config Files Are Back! If you've been using ASP.NET 3.5, you probably have noticed that the web.config file has turned into quite a mess of configuration settings between all the custom handler and module mappings for the various web server versions. Part of the reason for this mess is that .NET 3.5 is a collection of add-on components running on top of the .NET Runtime 2.0 and so almost all of the new features of .NET 3.5 where essentially introduced as custom modules and handlers that had to be explicitly configured in the config file. Because the core runtime didn't rev with 3.5, all those configuration options couldn't be moved up to other configuration files in the system chain. With version 4.0 a consolidation was possible, and the result is a much simpler web.config file by default. A default empty ASP.NET 4.0 Web Forms project looks like this: <?xml version="1.0"?> <configuration> <system.web> <compilation debug="true" targetFramework="4.0" /> </system.web> </configuration> Need I say more? Configuration Transformation Files to Manage Configurations and Application Packaging ASP.NET 4.0 introduces the ability to create multi-target configuration files. This means it's possible to create a single configuration file that can be transformed based on relatively simple replacement rules using a Visual Studio and WebDeploy provided XSLT syntax. The idea is that you can create a 'master' configuration file and then create customized versions of this master configuration file by applying some relatively simplistic search and replace, add or remove logic to specific elements and attributes in the original file. To give you an idea, here's the example code that Visual Studio creates for a default web.Release.config file, which replaces a connection string, removes the debug attribute and replaces the CustomErrors section: <?xml version="1.0"?> <configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform"> <connectionStrings> <add name="MyDB" connectionString="Data Source=ReleaseSQLServer;Initial Catalog=MyReleaseDB;Integrated Security=True" xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/> </connectionStrings> <system.web> <compilation xdt:Transform="RemoveAttributes(debug)" /> <customErrors defaultRedirect="GenericError.htm" mode="RemoteOnly" xdt:Transform="Replace"> <error statusCode="500" redirect="InternalError.htm"/> </customErrors> </system.web> </configuration> You can see the XSL transform syntax that drives this functionality. Basically, only the elements listed in the override file are matched and updated – all the rest of the original web.config file stays intact. Visual Studio 2010 supports this functionality directly in the project system so it's easy to create and maintain these customized configurations in the project tree. Once you're ready to publish your application, you can then use the Publish <yourWebApplication> option on the Build menu which allows publishing to disk, via FTP or to a Web Server using Web Deploy. You can also create a deployment package as a .zip file which can be used by the WebDeploy tool to configure and install the application. You can manually run the Web Deploy tool or use the IIS Manager to install the package on the server or other machine. You can find out more about WebDeploy and Packaging here: http://tinyurl.com/2anxcje. Improved Routing Routing provides a relatively simple way to create clean URLs with ASP.NET by associating a template URL path and routing it to a specific ASP.NET HttpHandler. Microsoft first introduced routing with ASP.NET MVC and then they integrated routing with a basic implementation in the core ASP.NET engine via a separate ASP.NET routing assembly. In ASP.NET 4.0, the process of using routing functionality gets a bit easier. First, routing is now rolled directly into System.Web, so no extra assembly reference is required in your projects to use routing. The RouteCollection class now includes a MapPageRoute() method that makes it easy to route to any ASP.NET Page requests without first having to implement an IRouteHandler implementation. It would have been nice if this could have been extended to serve *any* handler implementation, but unfortunately for anything but a Page derived handlers you still will have to implement a custom IRouteHandler implementation. ASP.NET Pages now include a RouteData collection that will contain route information. Retrieving route data is now a lot easier by simply using this.RouteData.Values["routeKey"] where the routeKey is the value specified in the route template (i.e., "users/{userId}" would use Values["userId"]). The Page class also has a GetRouteUrl() method that you can use to create URLs with route data values rather than hardcoding the URL: <%= this.GetRouteUrl("users",new { userId="ricks" }) %> You can also use the new Expression syntax using <%$RouteUrl %> to accomplish something similar, which can be easier to embed into Page or MVC View code: <a runat="server" href='<%$RouteUrl:RouteName=user, id=ricks %>'>Visit User</a> Finally, the Response object also includes a new RedirectToRoute() method to build a route url for redirection without hardcoding the URL. Response.RedirectToRoute("users", new { userId = "ricks" }); All of these routines are helpers that have been integrated into the core ASP.NET engine to make it easier to create routes and retrieve route data, which hopefully will result in more people taking advantage of routing in ASP.NET. To find out more about the routing improvements you can check out Dan Maharry's blog which has a couple of nice blog entries on this subject: http://tinyurl.com/37trutj and http://tinyurl.com/39tt5w5. Session State Improvements Session state is an often used and abused feature in ASP.NET and version 4.0 introduces a few enhancements geared towards making session state more efficient and to minimize at least some of the ill effects of overuse. The first improvement affects out of process session state, which is typically used in web farm environments or for sites that store application sensitive data that must survive AppDomain restarts (which in my opinion is just about any application). When using OutOfProc session state, ASP.NET serializes all the data in the session statebag into a blob that gets carried over the network and stored either in the State server or SQL Server via the Session provider. Version 4.0 provides some improvement in this serialization of the session data by offering an enableCompression option on the web.Config <Session> section, which forces the serialized session state to be compressed. Depending on the type of data that is being serialized, this compression can reduce the size of the data travelling over the wire by as much as a third. It works best on string data, but can also reduce the size of binary data. In addition, ASP.NET 4.0 now offers a way to programmatically turn session state on or off as part of the request processing queue. In prior versions, the only way to specify whether session state is available is by implementing a marker interface on the HTTP handler implementation. In ASP.NET 4.0, you can now turn session state on and off programmatically via HttpContext.Current.SetSessionStateBehavior() as part of the ASP.NET module pipeline processing as long as it occurs before the AquireRequestState pipeline event. Output Cache Provider Output caching in ASP.NET has been a very useful but potentially memory intensive feature. The default OutputCache mechanism works through in-memory storage that persists generated output based on various lifetime related parameters. While this works well enough for many intended scenarios, it also can quickly cause runaway memory consumption as the cache fills up and serves many variations of pages on your site. ASP.NET 4.0 introduces a provider model for the OutputCache module so it becomes possible to plug-in custom storage strategies for cached pages. One of the goals also appears to be to consolidate some of the different cache storage mechanisms used in .NET in general to a generic Windows AppFabric framework in the future, so various different mechanisms like OutputCache, the non-Page specific ASP.NET cache and possibly even session state eventually can use the same caching engine for storage of persisted data both in memory and out of process scenarios. For developers, the OutputCache provider feature means that you can now extend caching on your own by implementing a custom Cache provider based on the System.Web.Caching.OutputCacheProvider class. You can find more info on creating an Output Cache provider in Gunnar Peipman's blog at: http://tinyurl.com/2vt6g7l. Response.RedirectPermanent ASP.NET 4.0 includes features to issue a permanent redirect that issues as an HTTP 301 Moved Permanently response rather than the standard 302 Redirect respond. In pre-4.0 versions you had to manually create your permanent redirect by setting the Status and Status code properties – Response.RedirectPermanent() makes this operation more obvious and discoverable. There's also a Response.RedirectToRoutePermanent() which provides permanent redirection of route Urls. Preloading of Applications ASP.NET 4.0 provides a new feature to preload ASP.NET applications on startup, which is meant to provide a more consistent startup experience. If your application has a lengthy startup cycle it can appear very slow to serve data to clients while the application is warming up and loading initial resources. So rather than serve these startup requests slowly in ASP.NET 4.0, you can force the application to initialize itself first before even accepting requests for processing. This feature works only on IIS 7.5 (Windows 7 and Windows Server 2008 R2) and works in combination with IIS. You can set up a worker process in IIS 7.5 to always be running, which starts the Application Pool worker process immediately. ASP.NET 4.0 then allows you to specify site-specific settings by setting the serverAutoStartEnabled on a particular site along with an optional serviceAutoStartProvider class that can be used to receive "startup events" when the application starts up. This event in turn can be used to configure the application and optionally pre-load cache data and other information required by the app on startup.  The configuration settings need to be made in applicationhost.config: <sites> <site name="WebApplication2" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PreWarmup" /> </site> </sites> <serviceAutoStartProviders> <add name="PreWarmup" type="PreWarmupProvider,MyAssembly" /> </serviceAutoStartProviders> Hooking up a warm up provider is optional so you can omit the provider definition and reference. If you do define it here's what it looks like: public class PreWarmupProvider System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // initialization for app } } This code fires and while it's running, ASP.NET/IIS will hold requests from hitting the pipeline. So until this code completes the application will not start taking requests. The idea is that you can perform any pre-loading of resources and cache values so that the first request will be ready to perform at optimal performance level without lag. Runtime Performance Improvements According to Microsoft, there have also been a number of invisible performance improvements in the internals of the ASP.NET runtime that should make ASP.NET 4.0 applications run more efficiently and use less resources. These features come without any change requirements in applications and are virtually transparent, except that you get the benefits by updating to ASP.NET 4.0. Summary The core feature set changes are minimal which continues a tradition of small incremental changes to the ASP.NET runtime. ASP.NET has been proven as a solid platform and I'm actually rather happy to see that most of the effort in this release went into stability, performance and usability improvements rather than a massive amount of new features. The new functionality added in 4.0 is minimal but very useful. A lot of people are still running pure .NET 2.0 applications these days and have stayed off of .NET 3.5 for some time now. I think that version 4.0 with its full .NET runtime rev and assembly and configuration consolidation will make an attractive platform for developers to update to. If you're a Web Forms developer in particular, ASP.NET 4.0 includes a host of new features in the Web Forms engine that are significant enough to warrant a quick move to .NET 4.0. I'll cover those changes in my next column. Until then, I suggest you give ASP.NET 4.0 a spin and see for yourself how the new features can help you out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Security Trimmed Cross Site Collection Navigation

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). This article will serve as documentation of a fully functional codeplex project that I just created. This project will give you a WebPart that will give you security trimmed navigation across site collections. The first question is, why create such a project? In every single SharePoint project you will do, one question you will always be faced with is, what should the boundaries of sites be, and what should the boundaries of site collections be? There is no good or bad answer to this, because it really really depends on your needs. There are some factors in play here. Site Collections will allow you to scale, as a Site collection is the smallest entity you can put inside a content database Site collections will allow you to offer different levels of SLAs, because you put a site collection on a separate content database, and put that database on a separate server. Site collections are a security boundary – and they can be moved around at will without affecting other site collections. Site collections are also a branding boundary. They are also a feature deployment boundary, so you can have two site collections on the same web application with completely different nature of services. But site collections break navigation, i.e. a site collection at “/”, and a site collection at “/sites/mySiteCollection”, are completely independent of each other. If you have access to both, the navigation of / won’t show you a link to /sites/mySiteCollection. Some people refer to this as a huge issue in SharePoint. Luckily, some workarounds exist. A long time ago, I had blogged about “Implementing Consistent Navigation across Site Collections”. That approach was a no-code solution, it worked – it gave you a consistent navigation across site collections. But, it didn’t work in a security trimmed fashion! i.e., if I don’t have access to Site Collection ‘X’, it would still show me a link to ‘X’. Well this project gets around that issue. Simply deploy this project, and it’ll give you a WebPart. You can use that WebPart as either a webpart or as a server control dropped via SharePoint designer, and it will give you Security Trimmed Cross Site Collection Navigation. The code has been written for SP2010, but it will work in SP2007 with the help of http://spwcfsupport.codeplex.com . What do I need to do to make it work? I’m glad you asked! Simple! Deploy the .wsp (which you can download here). This will give you a site collection feature called “Winsmarts Cross Site Collection Navigation” as shown below. Go ahead and activate it, and this will give you a WebPart called “Winsmarts Navigation Web Part” as shown below: Just drop this WebPart on your page, and it will show you all site collections that the currently logged in user has access to. Really it’s that easy! This is shown as below - In the above example, I have two site collections that I created at /sites/SiteCollection1 and /sites/SiteCollection2. The navigation shows the titles. You see some extraneous crap as well, you might want to clean that – I’ll talk about that in a minute. What? You’re running into problems? If the problem you’re running into is that you are prompted to login three times, and then it shows a blank webpart that says “Loading your applications ..” and then craps out!, then most probably you’re using a different authentication scheme. Behind the scenes I use a custom WCF service to perform this job. OOTB, I’ve set it to work with NTLM, but if you need to make it work alternate authentications such as forms based auth, or client side certs, you will need to edit the %14%\ISAPI\Winsmarts.CrossSCNav\web.config file, specifically, this section - 1: <bindings> 2: <webHttpBinding> 3: <binding name="customWebHttpBinding"> 4: <security mode="TransportCredentialOnly"> 5: <transport clientCredentialType="Ntlm"/> 6: </security> 7: </binding> 8: </webHttpBinding> 9: </bindings> For Kerberos, change the “clientCredentialType” to “Windows” For Forms auth, remove that transport line For client certs – well that’s a bit more involved, but it’s just web.config changes – hit a good book on WCF or hire me for a billion trillion $. But fair warning, I might be too busy to help immediately. If you’re running into a different problem, please leave a comment below, but the code is pretty rock solid, so .. hmm .. check what you’re doing! BTW, I don’t  make any guarantee/warranty on this – if this code makes you sterile, unpopular, bad hairstyle, anything else, that is your problem! But, there are some known issues - I wrote this as a concept – you can easily extend it to be more flexible. Example, hierarchical nav, or, horizontal nav, jazzy effects with jquery or silverlight– all those are possible very very easily. This webpart is not smart enough to co-exist with another instance of itself on the same page. I can easily extend it to do so, which I will do in my spare(!?) time! Okay good! But that’s not all! As you can see, just dropping the WebPart may show you many extraneous site collections, or maybe you want to restrict which site collections are shown, or exclude a certain site collection to be shown from the navigation. To support that, I created a property on the WebPart called “UrlMatchPattern”, which is a regex expression you specify to trim the results :). So, just edit the WebPart, and specify a string property of “http://sp2010/sites/” as shown below. Note that you can put in whatever regex expression you want! So go crazy, I don’t care! And this gives you a cleaner look.   w00t! Enjoy! Comment on the article ....

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • Reporting Services - It's a Wrap!

    - by smisner
    If you have any experience at all with Reporting Services, you have probably developed a report using the matrix data region. It's handy when you want to generate columns dynamically based on data. If users view a matrix report online, they can scroll horizontally to view all columns and all is well. But if they want to print the report, the experience is completely different and you'll have to decide how you want to handle dynamic columns. By default, when a user prints a matrix report for which the number of columns exceeds the width of the page, Reporting Services determines how many columns can fit on the page and renders one or more separate pages for the additional columns. In this post, I'll explain two techniques for managing dynamic columns. First, I'll show how to use the RepeatRowHeaders property to make it easier to read a report when columns span multiple pages, and then I'll show you how to "wrap" columns so that you can avoid the horizontal page break. Included with this post are the sample RDLs for download. First, let's look at the default behavior of a matrix. A matrix that has too many columns for one printed page (or output to page-based renderer like PDF or Word) will be rendered such that the first page with the row group headers and the inital set of columns, as shown in Figure 1. The second page continues by rendering the next set of columns that can fit on the page, as shown in Figure 2.This pattern continues until all columns are rendered. The problem with the default behavior is that you've lost the context of employee and sales order - the row headers - on the second page. That makes it hard for users to read this report because the layout requires them to flip back and forth between the current page and the first page of the report. You can fix this behavior by finding the RepeatRowHeaders of the tablix report item and changing its value to True. The second (and subsequent pages) of the matrix now look like the image shown in Figure 3. The problem with this approach is that the number of printed pages to flip through is unpredictable when you have a large number of potential columns. What if you want to include all columns on the same page? You can take advantage of the repeating behavior of a tablix and get repeating columns by embedding one tablix inside of another. For this example, I'm using SQL Server 2008 R2 Reporting Services. You can get similar results with SQL Server 2008. (In fact, you could probably do something similar in SQL Server 2005, but I haven't tested it. The steps would be slightly different because you would be working with the old-style matrix as compared to the new-style tablix discussed in this post.) I created a dataset that queries AdventureWorksDW2008 tables: SELECT TOP (100) e.LastName + ', ' + e.FirstName AS EmployeeName, d.FullDateAlternateKey, f.SalesOrderNumber, p.EnglishProductName, sum(SalesAmount) as SalesAmount FROM FactResellerSales AS f INNER JOIN DimProduct AS p ON p.ProductKey = f.ProductKey INNER JOIN DimDate AS d ON d.DateKey = f.OrderDateKey INNER JOIN DimEmployee AS e ON e.EmployeeKey = f.EmployeeKey GROUP BY p.EnglishProductName, d.FullDateAlternateKey, e.LastName + ', ' + e.FirstName, f.SalesOrderNumber ORDER BY EmployeeName, f.SalesOrderNumber, p.EnglishProductName To start the report: Add a matrix to the report body and drag Employee Name to the row header, which also creates a group. Next drag SalesOrderNumber below Employee Name in the Row Groups panel, which creates a second group and a second column in the row header section of the matrix, as shown in Figure 4. Now for some trickiness. Add another column to the row headers. This new column will be associated with the existing EmployeeName group rather than causing BIDS to create a new group. To do this, right-click on the EmployeeName textbox in the bottom row, point to Insert Column, and then click Inside Group-Right. Then add the SalesOrderNumber field to this new column. By doing this, you're creating a report that repeats a set of columns for each EmployeeName/SalesOrderNumber combination that appears in the data. Next, modify the first row group's expression to group on both EmployeeName and SalesOrderNumber. In the Row Groups section, right-click EmployeeName, click Group Properties, click the Add button, and select [SalesOrderNumber]. Now you need to configure the columns to repeat. Rather than use the Columns group of the matrix like you might expect, you're going to use the textbox that belongs to the second group of the tablix as a location for embedding other report items. First, clear out the text that's currently in the third column - SalesOrderNumber - because it's already added as a separate textbox in this report design. Then drag and drop a matrix into that textbox, as shown in Figure 5. Again, you need to do some tricks here to get the appearance and behavior right. We don't really want repeating rows in the embedded matrix, so follow these steps: Click on the Rows label which then displays RowGroup in the Row Groups pane below the report body. Right-click on RowGroup,click Delete Group, and select the option to delete associated rows and columns. As a result, you get a modified matrix which has only a ColumnGroup in it, with a row above a double-dashed line for the column group and a row below the line for the aggregated data. Let's continue: Drag EnglishProductName to the data textbox (below the line). Add a second data row by right-clicking EnglishProductName, pointing to Insert Row, and clicking Below. Add the SalesAmount field to the new data textbox. Now eliminate the column group row without eliminating the group. To do this, right-click the row above the double-dashed line, click Delete Rows, and then select Delete Rows Only in the message box. Now you're ready for the fit and finish phase: Resize the column containing the embedded matrix so that it fits completely. Also, the final column in the matrix is for the column group. You can't delete this column, but you can make it as small as possible. Just click on the matrix to display the row and column handles, and then drag the right edge of the rightmost column to the left to make the column virtually disappear. Next, configure the groups so that the columns of the embedded matrix will wrap. In the Column Groups pane, right-click ColumnGroup1 and click on the expression button (labeled fx) to the right of Group On [EnglishProductName]. Replace the expression with the following: =RowNumber("SalesOrderNumber" ). We use SalesOrderNumber here because that is the name of the group that "contains" the embedded matrix. The next step is to configure the number of columns to display before wrapping. Click any cell in the matrix that is not inside the embedded matrix, and then double-click the second group in the Row Groups pane - SalesOrderNumber. Change the group expression to the following expression: =Ceiling(RowNumber("EmployeeName")/3) The last step is to apply formatting. In my example, I set the SalesAmount textbox's Format property to C2 and also right-aligned the text in both the EnglishProductName and the SalesAmount textboxes. And voila - Figure 6 shows a matrix report with wrapping columns. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Customize the SimpleMembership in ASP.NET MVC 4.0

    - by thangchung
    As we know, .NET 4.5 have come up to us, and come along with a lot of new interesting features as well. Visual Studio 2012 was also introduced some days ago. They made us feel very happy with cool improvement along with us. Performance when loading code editor is very good at the moment (immediate after click on the solution). I explore some of cool features at these days. Some of them like Json.NET integrated in ASP.NET MVC 4.0, improvement on asynchronous action, new lightweight theme on Visual Studio, supporting very good on mobile development, improvement on authentication… I reviewed them, and found out that in this version of .NET Microsoft was not only developed new feature that suggest from community but also focused on improvement performance of existing features or components. Besides that, they also opened source more projects, like Entity Framework, Reactive Extensions, ASP.NET Web Stack… At the moment, I feel Microsoft want to open source more and more their projects. Today, I am going to dive in deep on new SimpleMembership model. It is really good because in this security model, Microsoft actually focus on development needs. As we know, in the past, they introduce some of provider supplied for coding security like MembershipProvider, RoleProvider… I don’t need to talk but everyone that have ever used it know that they were actually hard to use, and not easy to maintain and unit testing. Why? Because every time you inherit it, you need to override all methods inside it. Some people try to abstract it by introduce more method with virtual keyword, and try to implement basic behavior, so in the subclass we only need to override the method that need for their business. But to me, it’s only the way to work around. ASP.NET team and Web Matrix knew about it, so they built the new features based on existing components on .NET framework. And one of component that comes to us is SimpleMembership and SimpleRole. They implemented the Façade pattern on the top of those, and called it is WebSecurity. In the web, we can call WebSecurity anywhere we want, and make a call to inside wrapper of it. I read a lot of them on web blog, on technical news, on MSDN as well. Matthew Osborn had an excellent article about it at his blog. Jon Galloway had an article like this at here. He analyzed why old membership provider not fixed well to ASP.NET MVC and how to get over it. Those are very good to me. It introduced to me about how to doing SimpleMembership on it, how to doing it on new ASP.NET MVC web application. But one thing, those didn’t tell me was how to doing it on existing security model (that mean we already had Users and Roles on legacy system, and how we can integrate it to this system), that’s a reason I will introduce it today. I have spent couples of hours to see what’s inside this, and try to make one example to clarify my concern. And it’s lucky that I can make it working well.The first thing, we need to create new ASP.NET MVC application on Visual Studio 2012. We need to choose Internet type for this web application. ASP.NET MVC actually creates all needs components for the basic membership and basic role. The cool feature is DoNetOpenAuth come along with it that means we can log-in using facebook, twitter or Windows Live if you want. But it’s only for LocalDb, so we need to change it to fix with existing database model on SQL Server. The next step we have to make SimpleMembership can understand which database we use and show it which column need to point to for the ID and UserName. I really like this feature because SimpleMembership on need to know about the ID and UserName, and they don’t care about rest of it. I assume that we have an existing database model like So we will point it in code like The codes for it, we put on InitializeSimpleMembershipAttribute like [AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)]     public sealed class InitializeSimpleMembershipAttribute : ActionFilterAttribute     {         private static SimpleMembershipInitializer _initializer;         private static object _initializerLock = new object();         private static bool _isInitialized;         public override void OnActionExecuting(ActionExecutingContext filterContext)         {             // Ensure ASP.NET Simple Membership is initialized only once per app start             LazyInitializer.EnsureInitialized(ref _initializer, ref _isInitialized, ref _initializerLock);         }         private class SimpleMembershipInitializer         {             public SimpleMembershipInitializer()             {                 try                 {                     WebSecurity.InitializeDatabaseConnection("DefaultDb", "User", "Id", "UserName", autoCreateTables: true);                 }                 catch (Exception ex)                 {                     throw new InvalidOperationException("The ASP.NET Simple Membership database could not be initialized. For more information, please see http://go.microsoft.com/fwlink/?LinkId=256588", ex);                 }             }         }     }And decorating it in the AccountController as below [Authorize]     [InitializeSimpleMembership]     public class AccountController : ControllerIn this case, assuming that we need to override the ValidateUser to point this to existing User database table, and validate it. We have to add one more class like public class CustomAdminMembershipProvider : SimpleMembershipProvider     {         // TODO: will do a better way         private const string SELECT_ALL_USER_SCRIPT = "select * from [dbo].[User]private where UserName = '{0}'";         private readonly IEncrypting _encryptor;         private readonly SimpleSecurityContext _simpleSecurityContext;         public CustomAdminMembershipProvider(SimpleSecurityContext simpleSecurityContext)             : this(new Encryptor(), new SimpleSecurityContext("DefaultDb"))         {         }         public CustomAdminMembershipProvider(IEncrypting encryptor, SimpleSecurityContext simpleSecurityContext)         {             _encryptor = encryptor;             _simpleSecurityContext = simpleSecurityContext;         }         public override bool ValidateUser(string username, string password)         {             if (string.IsNullOrEmpty(username))             {                 throw new ArgumentException("Argument cannot be null or empty", "username");             }             if (string.IsNullOrEmpty(password))             {                 throw new ArgumentException("Argument cannot be null or empty", "password");             }             var hash = _encryptor.Encode(password);             using (_simpleSecurityContext)             {                 var users =                     _simpleSecurityContext.Users.SqlQuery(                         string.Format(SELECT_ALL_USER_SCRIPT, username));                 if (users == null && !users.Any())                 {                     return false;                 }                 return users.FirstOrDefault().Password == hash;             }         }     }SimpleSecurityDataContext at here public class SimpleSecurityContext : DbContext     {         public DbSet<User> Users { get; set; }         public SimpleSecurityContext(string connStringName) :             base(connStringName)         {             this.Configuration.LazyLoadingEnabled = true;             this.Configuration.ProxyCreationEnabled = false;         }         protected override void OnModelCreating(DbModelBuilder modelBuilder)         {             base.OnModelCreating(modelBuilder);                          modelBuilder.Configurations.Add(new UserMapping());         }     }And Mapping for User as below public class UserMapping : EntityMappingBase<User>     {         public UserMapping()         {             this.Property(x => x.UserName);             this.Property(x => x.DisplayName);             this.Property(x => x.Password);             this.Property(x => x.Email);             this.ToTable("User");         }     }One important thing, you need to modify the web.config to point to our customize SimpleMembership <membership defaultProvider="AdminMemberProvider" userIsOnlineTimeWindow="15">       <providers>         <clear/>         <add name="AdminMemberProvider" type="CIK.News.Web.Infras.Security.CustomAdminMembershipProvider, CIK.News.Web.Infras" />       </providers>     </membership>     <roleManager enabled="false">       <providers>         <clear />         <add name="AdminRoleProvider" type="CIK.News.Web.Infras.Security.AdminRoleProvider, CIK.News.Web.Infras" />       </providers>     </roleManager>The good thing at here is we don’t need to modify the code on AccountController. We only need to modify on SimpleMembership and Simple Role (if need). Now build all solutions, run it. We should see a screen like thisIf I login to Twitter button at the bottom of this page, we will be transfer to twitter authentication pageYou have to waiting for a moment Afterwards it will transfer you back to your admin screenYou can find all source codes at my MSDN code. I will really happy if you guys feel free to put some comments as below. It will be helpful to improvement my code in the future. Thank for all your readings. 

    Read the article

  • Microsoft TypeScript : A Typed Superset of JavaScript

    - by shiju
    JavaScript is gradually becoming a ubiquitous programming language for the web, and the popularity of JavaScript is increasing day by day. Earlier, JavaScript was just a language for browser. But now, we can write JavaScript apps for browser, server and mobile. With the advent of Node.js, you can build scalable, high performance apps on the server with JavaScript. But many developers, especially developers who are working with static type languages, are hating the JavaScript language due to the lack of structuring and the maintainability problems of JavaScript. Microsoft TypeScript is trying to solve some problems of JavaScript when we are building scalable JavaScript apps. Microsoft TypeScript TypeScript is Microsoft's solution for writing scalable JavaScript programs with the help of Static Types, Interfaces, Modules and Classes along with greater tooling support. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. This would be more productive for developers who are coming from static type languages. You can write scalable JavaScript  apps in TypeScript with more productive and more maintainable manner, and later you can compiles to plain JavaScript which will be run on any browser and any OS. TypeScript will work with browser based JavaScript apps and JavaScript apps that following CommonJS specification. You can use TypeScript for building HTML 5 apps, Node.JS apps, WinRT apps. TypeScript is providing better tooling support with Visual Studio, Sublime Text, Vi, Emacs. Microsoft has open sourced its TypeScript languages on CodePlex at http://typescript.codeplex.com/    Install TypeScript You can install TypeScript compiler as a Node.js package via the NPM or you can install as a Visual Studio 2012 plug-in which will enable you better tooling support within the Visual Studio IDE. Since TypeScript is distributed as a Node.JS package, and it can be installed on other OS such as Linux and MacOS. The following command will install TypeScript compiler via an npm package for node.js npm install –g typescript TypeScript provides a Visual Studio 2012 plug-in as MSI file which will install TypeScript and also provides great tooling support within the Visual Studio, that lets the developers to write TypeScript apps with greater productivity and better maintainability. You can download the Visual Studio plug-in from here Building JavaScript  apps with TypeScript You can write typed version of JavaScript programs with TypeScript and then compiles it to plain JavaScript code. The beauty of the TypeScript is that it is already JavaScript and normal JavaScript programs are valid TypeScript programs, which means that you can write normal  JavaScript code and can use typed version of JavaScript whenever you want. TypeScript files are using extension .ts and this will be compiled using a compiler named tsc. The following is a sample program written in  TypeScript greeter.ts 1: class Greeter { 2: greeting: string; 3: constructor (message: string) { 4: this.greeting = message; 5: } 6: greet() { 7: return "Hello, " + this.greeting; 8: } 9: } 10:   11: var greeter = new Greeter("world"); 12:   13: var button = document.createElement('button') 14: button.innerText = "Say Hello" 15: button.onclick = function() { 16: alert(greeter.greet()) 17: } 18:   19: document.body.appendChild(button) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above program is compiling with the TypeScript compiler as shown in the below picture The TypeScript compiler will generate a JavaScript file after compiling the TypeScript program. If your TypeScript programs having any reference to other TypeScript files, it will automatically generate JavaScript files for the each referenced files. The following code block shows the compiled version of plain JavaScript  for the above greeter.ts greeter.js 1: var Greeter = (function () { 2: function Greeter(message) { 3: this.greeting = message; 4: } 5: Greeter.prototype.greet = function () { 6: return "Hello, " + this.greeting; 7: }; 8: return Greeter; 9: })(); 10: var greeter = new Greeter("world"); 11: var button = document.createElement('button'); 12: button.innerText = "Say Hello"; 13: button.onclick = function () { 14: alert(greeter.greet()); 15: }; 16: document.body.appendChild(button); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Tooling Support with Visual Studio TypeScript is providing a plug-in for Visual Studio which will provide an excellent support for writing TypeScript  programs within the Visual Studio. The following screen shot shows the Visual Studio template for TypeScript apps   The following are the few screen shots of Visual Studio IDE for TypeScript apps. Summary TypeScript is Microsoft's solution for writing scalable JavaScript apps which will solve lot of problems involved in larger JavaScript apps. I hope that this solution will attract lot of developers who are really looking for writing maintainable structured code in JavaScript, without losing any productivity. TypeScript lets developers to write JavaScript apps with the help of Static Types, Interfaces, Modules and Classes and also providing better productivity. I am a passionate developer on Node.JS and would definitely try to use TypeScript for building Node.JS apps on the Windows Azure cloud. I am really excited about to writing Node.JS apps by using TypeScript, from my favorite development IDE Visual Studio. You can follow me on twitter at @shijucv

    Read the article

  • Scrum Master Stephen Forte Teaches Agile Development, Silverlight and BI at GIDS 2010

    - by rajesh ahuja
    Great Indian Developer Summit 2010 – Gold Standard for India's Software Developer Ecosystem Bangalore, March 25, 2010: The author of several books on application and database development including Programming SQL Server 2008 and certified Scrum Master Stephen Forte is coming this summer to India's biggest summit for the developer ecosystem - Great Indian Developer Summit. At the summit, Stephen will conduct a workshop guaranteed to give attendees a jump start in taking a certified scrum master exam. Scrum, one of the most popular Agile project management and development methods, which is starting to be adopted at major corporations and on very large projects. After an introduction to the basics of Scrum like project planning and estimation, the Scrum Master, team, product owner and burn down, and of course the daily Scrum, Stephen will show many real world applications of the methodology drawn from his own experience as a Scrum Master. Negotiating with the business, estimation and team dynamics are all discussed as well as how to use Scrum in small organizations, large enterprise environments and consulting environments. Stephen will also discuss using Scrum with virtual teams and an off-shoring environment. He will then take a look at the tools we will use for Agile development, including planning poker, unit testing, and much more. On 20th April at the GIDS.NET Conference, Stephen will also conduct a series of sessions on Microsoft computing technologies. He will teach how to build data driven, n-tier Rich Internet Applications (RIA) with Silverlight 4.0. Line of business applications (LOB) in Silverlight 4.0 are easy by tapping the power of WCF RIA Services, the Silverlight Toolkit, and elevated out of browser support. Stephen's demo centric session will walk you through an example of building a LOB application with Silverlight 4.0. See how Silverlight and WCF RIA Services support domain logic, services, data binding, validation, server based paging, authentication, authorization and much more. Silverlight 4.0 means business. Silverlight runs C# and Visual Basic code, and so it seems natural that a business application might share some code between the Silverlight client and its ASP.NET Web server. You may want to run some code client-side for interactivity, but re-run that code on the server for security or reliability. This is possible, and there are several techniques you can use to accomplish this goal. In Stephen's second talk learn about the various techniques and their pros and cons. Some techniques work better in C#, others in VB. Still others are simpler with a little extra tooling or code-generation. Any serious Silverlight business application will almost certainly face this issue, and this session gets you going fast. In the third talk, Stephen will explain how to properly architect and deploy a BI application using a mix of some exciting new tools and some old familiar ones. He will start with a traditional relational transaction centric database (OLTP) and explore ways to build a data warehouse (OLAP), looking at the star and snowflake schemas. Next he will look at the process of extraction, transformation, and loading (ETL) your OLTP data into your data warehouse. Different techniques for ETL will be described and the various tradeoffs will be discussed. Then he will look at using the warehouse for reporting, drill down, and data analysis in Microsoft Excel's PowerPivot 2010. The session will round off by showing how to properly build a cube and build a data analysis application on top of that cube, and conclude by looking at some tools to help with the data visualization process. Every year, GIDS is a game changer for several thousands of IT professionals, providing them with a competitive edge over their peers, enlightening them with bleeding-edge information most useful in their daily jobs, helping them network with world-class experts and visionaries, and providing them with a much needed thrust in their careers. Attend Great Indian Developer Summit to gain the information, education and solutions you seek. From post-conference workshops, breakout sessions by expert instructors, keynotes by industry heavyweights, enhanced networking opportunities, and more. About Great Indian Developer Summit Great Indian Developer Summit is the gold standard for India's software developer ecosystem for gaining exposure to and evaluating new projects, tools, services, platforms, languages, software and standards. Packed with premium knowledge, action plans and advise from been-there-done-it veterans, creators, and visionaries, the 2010 edition of Great Indian Developer Summit features focused sessions, case studies, workshops and power panels that will transform you into a force to reckon with. Featuring 3 co-located conferences: GIDS.NET, GIDS.Web, GIDS.Java and an exclusive day of in-depth tutorials - GIDS.Workshops, from 20 April to 24 April at the IISc campus in Bangalore. At GIDS you'll participate in hundreds of sessions encompassing the full range of Microsoft computing, Java, Agile, RIA, Rich Web, open source/standards, languages, frameworks and platforms, practical tutorials that deep dive into technical skill and best practices, inspirational keynote presentations, an Expo Hall featuring dozens of the latest projects and products activities, engaging networking events, and the interact with the best and brightest of speakers from around the world. For further information on GIDS 2010, please visit the summit on the web http://www.developersummit.com/ A Saltmarch Media Press Release E: [email protected] Ph: +91 80 4005 1000

    Read the article

  • Validation in Silverlight

    - by Timmy Kokke
    Getting started with the basics Validation in Silverlight can get very complex pretty easy. The DataGrid control is the only control that does data validation automatically, but often you want to validate your own entry form. Values a user may enter in this form can be restricted by the customer and have to fit an exact fit to a list of requirements or you just want to prevent problems when saving the data to the database. Showing a message to the user when a value is entered is pretty straight forward as I’ll show you in the following example.     This (default) Silverlight textbox is data-bound to a simple data class. It has to be bound in “Two-way” mode to be sure the source value is updated when the target value changes. The INotifyPropertyChanged interface must be implemented by the data class to get the notification system to work. When the property changes a simple check is performed and when it doesn’t match some criteria an ValidationException is thrown. The ValidatesOnExceptions binding attribute is set to True to tell the textbox it should handle the thrown ValidationException. Let’s have a look at some code now. The xaml should contain something like below. The most important part is inside the binding. In this case the Text property is bound to the “Name” property in TwoWay mode. It is also told to validate on exceptions. This property is false by default.   <StackPanel Orientation="Horizontal"> <TextBox Width="150" x:Name="Name" Text="{Binding Path=Name, Mode=TwoWay, ValidatesOnExceptions=True}"/> <TextBlock Text="Name"/> </StackPanel>   The data class in this first example is a very simplified person class with only one property: string Name. The INotifyPropertyChanged interface is implemented and the PropertyChanged event is fired when the Name property changes. When the property changes a check is performed to see if the new string is null or empty. If this is the case a ValidationException is thrown explaining that the entered value is invalid.   public class PersonData:INotifyPropertyChanged { private string _name; public string Name { get { return _name; } set { if (_name != value) { if(string.IsNullOrEmpty(value)) throw new ValidationException("Name is required"); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } } public event PropertyChangedEventHandler PropertyChanged=delegate { }; } The last thing that has to be done is letting binding an instance of the PersonData class to the DataContext of the control. This is done in the code behind file. public partial class Demo1 : UserControl { public Demo1() { InitializeComponent(); this.DataContext = new PersonData() {Name = "Johnny Walker"}; } }   Error Summary In many cases you would have more than one entry control. A summary of errors would be nice in such case. With a few changes to the xaml an error summary, like below, can be added.           First, add a namespace to the xaml so the control can be used. Add the following line to the header of the .xaml file. xmlns:Controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"   Next, add the control to the layout. To get the result as in the image showed earlier, add the control right above the StackPanel from the first example. It’s got a small margin to separate it from the textbox a little.   <Controls:ValidationSummary Margin="8"/>   The ValidationSummary control has to be notified that an ValidationException occurred. This can be done with a small change to the xaml too. Add the NotifyOnValidationError to the binding expression. By default this value is set to false, so nothing would be notified. Set the property to true to get it to work.   <TextBox Width="150" x:Name="Name" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True}"/>   Data annotation Validating data in the setter is one option, but not my personal favorite. It’s the easiest way if you have a single required value you want to check, but often you want to validate more. Besides, I don’t consider it best practice to write logic in setters. The way used by frameworks like WCF Ria Services is the use of attributes on the properties. Instead of throwing exceptions you have to call the static method ValidateProperty on the Validator class. This call stays always the same for a particular property, not even when you change the attributes on the property. To mark a property “Required” you can use the RequiredAttribute. This is what the Name property is going to look like:   [Required] public string Name { get { return _name; } set { if (_name != value) { Validator.ValidateProperty(value, new ValidationContext(this, null, null){ MemberName = "Name" }); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } }   The ValidateProperty method takes the new value for the property and an instance of ValidationContext. The properties passed to the constructor of the ValidationContextclass are very straight forward. This part is the same every time. The only thing that changes is the MemberName property of the ValidationContext. Property has to hold the name of the property you want to validate. It’s the same value you provide the PropertyChangedEventArgs with. The System.ComponentModel.DataAnnotation contains eight different validation attributes including a base class to create your own. They are: RequiredAttribute Specifies that a value must be provided. RangeAttribute The provide value must fall in the specified range. RegularExpressionAttribute Validates is the value matches the regular expression. StringLengthAttribute Checks if the number of characters in a string falls between a minimum and maximum amount. CustomValidationAttribute Use a custom method to validate the value. DataTypeAttribute Specify a data type using an enum or a custom data type. EnumDataTypeAttribute Makes sure the value is found in a enum. ValidationAttribute A base class for custom validation attributes All of these will ensure that an validation exception is thrown, except the DataTypeAttribute. This attribute is used to provide some additional information about the property. You can use this information in your own code.   [Required] [Range(0,125,ErrorMessage = "Value is not a valid age")] public int Age {   It’s no problem to stack different validation attributes together. For example, when an Age is required and must fall in the range from 0 to 125:   [Required, StringLength(255,MinimumLength = 3)] public string Name {   Or in one row like this, for a required Name with at least 3 characters and a maximum of 255:   Delayed validation Having properties marked as required can be very useful. The only downside to the technique described earlier is that you have to change the value in order to get it validated. What if you start out with empty an empty entry form? All fields are empty and thus won’t be validated. With this small trick you can validate at the moment the user click the submit button.   <TextBox Width="150" x:Name="NameField" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True, UpdateSourceTrigger=Explicit}"/>   By default, when a TwoWay bound control looses focus the value is updated. When you added validation like I’ve shown you earlier, the value is validated. To overcome this, you have to tell the binding update explicitly by setting the UpdateSourceTrigger binding property to Explicit:   private void SubmitButtonClick(object sender, RoutedEventArgs e) { NameField.GetBindingExpression(TextBox.TextProperty).UpdateSource(); }   This way, the binding is in two direction but the source is only updated, thus validated, when you tell it to. In the code behind you have to call the UpdateSource method on the binding expression, which you can get from the TextBox.   Conclusion Data validation is something you’ll probably want on almost every entry form. I always thought it was hard to do, but it wasn’t. If you can throw an exception you can do validation. If you want to know anything more in depth about something I talked about in this article let me know. I might write an entire post to that.

    Read the article

  • Draw a Custom cell for tableview ( uitableview ) , with changed colors and separator color and width

    - by Madhup
    Hi, I want to draw the background of a UITableViewCell which has a grouped style. The problem with me is I am not able to call the -(void)drawRect:(CGRect)rect or I think it should be called programmatically... I have taken code from following link . http://stackoverflow.com/questions/400965/how-to-customize-the-background-border-colors-of-a-grouped-table-view/1031593#1031593 // // CustomCellBackgroundView.h // // Created by Mike Akers on 11/21/08. // Copyright 2008 __MyCompanyName__. All rights reserved. // #import <UIKit/UIKit.h> typedef enum { CustomCellBackgroundViewPositionTop, CustomCellBackgroundViewPositionMiddle, CustomCellBackgroundViewPositionBottom, CustomCellBackgroundViewPositionSingle } CustomCellBackgroundViewPosition; @interface CustomCellBackgroundView : UIView { UIColor *borderColor; UIColor *fillColor; CustomCellBackgroundViewPosition position; } @property(nonatomic, retain) UIColor *borderColor, *fillColor; @property(nonatomic) CustomCellBackgroundViewPosition position; @end // // CustomCellBackgroundView.m // // Created by Mike Akers on 11/21/08. // Copyright 2008 __MyCompanyName__. All rights reserved. // #import "CustomCellBackgroundView.h" static void addRoundedRectToPath(CGContextRef context, CGRect rect, float ovalWidth,float ovalHeight); @implementation CustomCellBackgroundView @synthesize borderColor, fillColor, position; - (BOOL) isOpaque { return NO; } - (id)initWithFrame:(CGRect)frame { if (self = [super initWithFrame:frame]) { // Initialization code } return self; } - (void)drawRect:(CGRect)rect { // Drawing code CGContextRef c = UIGraphicsGetCurrentContext(); CGContextSetFillColorWithColor(c, [fillColor CGColor]); CGContextSetStrokeColorWithColor(c, [borderColor CGColor]); CGContextSetLineWidth(c, 2.0); if (position == CustomCellBackgroundViewPositionTop) { CGFloat minx = CGRectGetMinX(rect) , midx = CGRectGetMidX(rect), maxx = CGRectGetMaxX(rect) ; CGFloat miny = CGRectGetMinY(rect) , maxy = CGRectGetMaxY(rect) ; minx = minx + 1; miny = miny + 1; maxx = maxx - 1; maxy = maxy ; CGContextMoveToPoint(c, minx, maxy); CGContextAddArcToPoint(c, minx, miny, midx, miny, ROUND_SIZE); CGContextAddArcToPoint(c, maxx, miny, maxx, maxy, ROUND_SIZE); CGContextAddLineToPoint(c, maxx, maxy); // Close the path CGContextClosePath(c); // Fill & stroke the path CGContextDrawPath(c, kCGPathFillStroke); return; } else if (position == CustomCellBackgroundViewPositionBottom) { CGFloat minx = CGRectGetMinX(rect) , midx = CGRectGetMidX(rect), maxx = CGRectGetMaxX(rect) ; CGFloat miny = CGRectGetMinY(rect) , maxy = CGRectGetMaxY(rect) ; minx = minx + 1; miny = miny ; maxx = maxx - 1; maxy = maxy - 1; CGContextMoveToPoint(c, minx, miny); CGContextAddArcToPoint(c, minx, maxy, midx, maxy, ROUND_SIZE); CGContextAddArcToPoint(c, maxx, maxy, maxx, miny, ROUND_SIZE); CGContextAddLineToPoint(c, maxx, miny); // Close the path CGContextClosePath(c); // Fill & stroke the path CGContextDrawPath(c, kCGPathFillStroke); return; } else if (position == CustomCellBackgroundViewPositionMiddle) { CGFloat minx = CGRectGetMinX(rect) , maxx = CGRectGetMaxX(rect) ; CGFloat miny = CGRectGetMinY(rect) , maxy = CGRectGetMaxY(rect) ; minx = minx + 1; miny = miny ; maxx = maxx - 1; maxy = maxy ; CGContextMoveToPoint(c, minx, miny); CGContextAddLineToPoint(c, maxx, miny); CGContextAddLineToPoint(c, maxx, maxy); CGContextAddLineToPoint(c, minx, maxy); CGContextClosePath(c); // Fill & stroke the path CGContextDrawPath(c, kCGPathFillStroke); return; } else if (position == CustomCellBackgroundViewPositionSingle) { CGFloat minx = CGRectGetMinX(rect) , midx = CGRectGetMidX(rect), maxx = CGRectGetMaxX(rect) ; CGFloat miny = CGRectGetMinY(rect) , midy = CGRectGetMidY(rect) , maxy = CGRectGetMaxY(rect) ; minx = minx + 1; miny = miny + 1; maxx = maxx - 1; maxy = maxy - 1; CGContextMoveToPoint(c, minx, midy); CGContextAddArcToPoint(c, minx, miny, midx, miny, ROUND_SIZE); CGContextAddArcToPoint(c, maxx, miny, maxx, midy, ROUND_SIZE); CGContextAddArcToPoint(c, maxx, maxy, midx, maxy, ROUND_SIZE); CGContextAddArcToPoint(c, minx, maxy, minx, midy, ROUND_SIZE); // Close the path CGContextClosePath(c); // Fill & stroke the path CGContextDrawPath(c, kCGPathFillStroke); return; } } - (void)dealloc { [borderColor release]; [fillColor release]; [super dealloc]; } @end static void addRoundedRectToPath(CGContextRef context, CGRect rect, float ovalWidth,float ovalHeight) { float fw, fh; if (ovalWidth == 0 || ovalHeight == 0) {// 1 CGContextAddRect(context, rect); return; } CGContextSaveGState(context);// 2 CGContextTranslateCTM (context, CGRectGetMinX(rect),// 3 CGRectGetMinY(rect)); CGContextScaleCTM (context, ovalWidth, ovalHeight);// 4 fw = CGRectGetWidth (rect) / ovalWidth;// 5 fh = CGRectGetHeight (rect) / ovalHeight;// 6 CGContextMoveToPoint(context, fw, fh/2); // 7 CGContextAddArcToPoint(context, fw, fh, fw/2, fh, 1);// 8 CGContextAddArcToPoint(context, 0, fh, 0, fh/2, 1);// 9 CGContextAddArcToPoint(context, 0, 0, fw/2, 0, 1);// 10 CGContextAddArcToPoint(context, fw, 0, fw, fh/2, 1); // 11 CGContextClosePath(context);// 12 CGContextRestoreGState(context);// 13 } but the problem is my drawRect is not getting called automatically......... I am doing it like this. CustomCellBackgroundView *custView = [[CustomCellBackgroundView alloc] initWithFrame:CGRectMake(0,0,320,44)]; [cell setBackgroundView:custView]; [custView release]; and doing this gives me transparent cell. I tried and fought with code but could get any results. Please help me out. I am really having no idea how this code will run.

    Read the article

  • Getting started with Exchange Web Services 2010

    - by Adam Tuttle
    I've been tasked with writing a SOAP web-service in .Net to be middleware between EWS2010 and an application server that previously used WebDAV to connect to Exchange. (As I understand it, WebDAV is going away with EWS2010, so the application server will no longer be able to connect as it previously did, and it is exponentially harder to connect to EWS without WebDAV. The theory is that doing it in .Net should be easier than anything else... Right?!) My end goal is to be able to get and create/update email, calendar items, contacts, and to-do list items for a specified Exchange account. (Deleting is not currently necessary, but I may build it in for future consideration, if it's easy enough). I was originally given some sample code, which did in fact work, but I quickly realized that it was outdated. The types and classes used appear nowhere in the current documentation. For example, the method used to create a connection to the Exchange server was: ExchangeService svc = new ExchangeService(); svc.Credentials = new WebCredentials(AuthEmailAddress, AuthEmailPassword); svc.AutodiscoverUrl(AutoDiscoverEmailAddress); For what it's worth, this was using an assembly that came with the sample code: Microsoft.Exchange.WebServices.dll ("MEWS"). Before I realized that this wasn't the current standard way to accomplish the connection, and it worked, I tried to build on it and add a method to create calendar items, which I copied from here: static void CreateAppointment(ExchangeServiceBinding esb) { // Create the appointment. CalendarItemType appointment = new CalendarItemType(); ... } Right away, I'm confronted with the difference between ExchangeService and ExchangeServiceBinding ("ESB"); so I started Googling to try and figure out how to get an ESB definition so that the CreateAppointment method will compile. I found this blog post that explains how to generate a proxy class from a WSDL, which I did. Unfortunately, this caused some conflicts where types that were defined in the original Assembly, Microsoft.Exchange.WebServices.dll (that came with the sample code) overlapped with Types in my new EWS.dll assembly (which I compiled from the code generated from the services.wsdl provided by the Exchange server). I excluded the MEWS assembly, which only made things worse. I went from a handful of errors and warnings to 25 errors and 2,510 warnings. All kinds of types and methods were not found. Something is clearly wrong, here. So I went back on the hunt. I found instructions on adding service references and web references (i.e. the extra steps it takes in VS2008), and I think I'm back on the right track. I removed (actually, for now, just excluded) all previous assemblies I had been trying; and I added a service reference for https://my.exchange-server.com/ews/services.wsdl Now I'm down to just 1 error and 1 warning. Warning: The element 'transport' cannot contain child element 'extendedProtectionPolicy' because the parent element's content model is empty. This is in reference to a change that was made to web.config when I added the service reference; and I just found a fix for that here on SO. I've commented that section out as indicated, and it did make the warning go away, so woot for that. The error hasn't been so easy to get around, though: Error: The type or namespace name 'ExchangeService' could not be found (are you missing a using directive or an assembly reference?) This is in reference to the function I was using to create the EWS connection, called by each of the web methods: private ExchangeService getService(String AutoDiscoverEmailAddress, String AuthEmailAddress, String AuthEmailPassword) { ExchangeService svc = new ExchangeService(); svc.Credentials = new WebCredentials(AuthEmailAddress, AuthEmailPassword); svc.AutodiscoverUrl(AutoDiscoverEmailAddress); return svc; } This function worked perfectly with the MEWS assembly from the sample code, but the ExchangeService type is no longer available. (Nor is ExchangeServiceBinding, that was the first thing I checked.) At this point, since I'm not following any directions from the documentation (I couldn't find anywhere in the documentation that said to add a service reference to your Exchange server's services.wsdl -- but that does seem to be the best/farthest I've gotten so far), I feel like I'm flying blind. I know I need to figure out whatever it is that should replace ExchangeService / ExchangeServiceBinding, implement that, and then work through whatever errors crop up as a result of that switch... But I have no idea how to do that, or where to look for how to do it. Googling "ExchangeService" and "ExchangeServiceBinding" only seem to lead back to outdated blog posts and MSDN, neither of which has proven terribly helpful thus far. Help me, Obi-Wan, you're my only hope!

    Read the article

  • Visual Studio 2013, ASP.NET MVC 5 Scaffolded Controls, and Bootstrap

    - by plitwin
    A few days ago, I created an ASP.NET MVC 5 project in the brand new Visual Studio 2013. I added some model classes and then proceeded to scaffold a controller class and views using the Entity Framework. Scaffolding Some Views Visual Studio 2013, by default, uses the Bootstrap 3 responsive CSS framework. Great; after all, we all want our web sites to be responsive and work well on mobile devices. Here’s an example of a scaffolded Create view as shown in Google Chrome browser   Looks pretty good. Okay, so let’s increase the width of the Title, Description, Address, and Date/Time textboxes. And decrease the width of the  State and MaxActors textbox controls. Can’t be that hard… Digging Into the Code Let’s take a look at the scaffolded Create.cshtml file. Here’s a snippet of code behind the Create view. Pretty simple stuff. @using (Html.BeginForm()) { @Html.AntiForgeryToken() <div class="form-horizontal"> <h4>RandomAct</h4> <hr /> @Html.ValidationSummary(true) <div class="form-group"> @Html.LabelFor(model => model.Title, new { @class = "control-label col-md-2" }) <div class="col-md-10"> @Html.EditorFor(model => model.Title) @Html.ValidationMessageFor(model => model.Title) </div> </div> <div class="form-group"> @Html.LabelFor(model => model.Description, new { @class = "control-label col-md-2" }) <div class="col-md-10"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> </div> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } A little more digging and I discover that there are three CSS files of importance in how the page is rendered: boostrap.css (and its minimized cohort) and site.css as shown below.   The Root of the Problem And here’s the root of the problem which you’ll find the following CSS in Site.css: /* Set width on the form input elements since they're 100% wide by default */ input, select, textarea { max-width: 280px; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Yes, Microsoft is for some reason setting the maximum width of all input, select, and textarea controls to 280 pixels. Not sure the motivation behind this, but until you change this or overrride this by assigning the form controls to some other CSS class, your controls will never be able to be wider than 280px. The Fix Okay, so here’s the deal: I hope to become very competent in all things Bootstrap in the near future, but I don’t think you should have to become a Bootstrap guru in order to modify some scaffolded control widths. And you don’t. Here is the solution I came up with: Find the aforementioned CSS code in SIte.css and change it to something more tenable. Such as: /* Set width on the form input elements since they're 100% wide by default */ input, select, textarea { max-width: 600px; } Because the @Html.EditorFor html helper doesn’t support the passing of HTML attributes, you will need to repalce any @Html.EditorFor() helpers with @Html.TextboxFor(), @Html.TextAreaFor, @Html.CheckBoxFor, etc. helpers, and then add a custom width attribute to each control you wish to modify. Thus, the earlier stretch of code might end up looking like this: @using (Html.BeginForm()) { @Html.AntiForgeryToken() <div class="form-horizontal"> <h4>Random Act</h4> <hr /> @Html.ValidationSummary(true) <div class="form-group"> @Html.LabelFor(model => model.Title, new { @class = "control-label col-md-2" }) <div class="col-md-10"> @Html.TextBoxFor(model => model.Title, new { style = "width: 400px" }) @Html.ValidationMessageFor(model => model.Title) </div> </div> <div class="form-group"> @Html.LabelFor(model => model.Description, new { @class = "control-label col-md-2" }) <div class="col-md-10"> @Html.TextAreaFor(model => model.Description, new { style = "width: 400px" }) @Html.ValidationMessageFor(model => model.Description) </div> </div> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Resulting Form Here’s what the page looks like after the fix: Technorati Tags: ASP.NET MVC,ASP.NET MVC 5,Bootstrap

    Read the article

  • Maintaining shared service in ASP.NET MVC Application

    - by kazimanzurrashid
    Depending on the application sometimes we have to maintain some shared service throughout our application. Let’s say you are developing a multi-blog supported blog engine where both the controller and view must know the currently visiting blog, it’s setting , user information and url generation service. In this post, I will show you how you can handle this kind of case in most convenient way. First, let see the most basic way, we can create our PostController in the following way: public class PostController : Controller { public PostController(dependencies...) { } public ActionResult Index(string blogName, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublished(blog.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCount(blog.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new IndexViewModel(urlResolver, user, blog, posts, count, page)); } public ActionResult Archive(string blogName, int? page, ArchiveDate archiveDate) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindArchived(blog.Id, archiveDate, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetArchivedCount(blog.Id, archiveDate); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new ArchiveViewModel(urlResolver, user, blog, posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { BlogInfo blog = blogSerivce.FindByName(blogName); if (blog == null) { return new NotFoundResult(); } TagInfo tag = tagService.FindBySlug(blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(blog.Id, tag.Id, PagingCalculator.StartIndex(page, blog.PostPerPage), blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); UserInfo user = null; if (HttpContext.User.Identity.IsAuthenticated) { user = userService.FindByName(HttpContext.User.Identity.Name); } return View(new TagViewModel(urlResolver, user, blog, posts, count, page, tag)); } } As you can see the above code heavily depends upon the current blog and the blog retrieval code is duplicated in all of the action methods, once the blog is retrieved the same blog is passed in the view model. Other than the blog the view also needs the current user and url resolver to render it properly. One way to remove the duplicate blog retrieval code is to create a custom model binder which converts the blog from a blog name and use the blog a parameter in the action methods instead of the string blog name, but it only helps the first half in the above scenario, the action methods still have to pass the blog, user and url resolver etc in the view model. Now lets try to improve the the above code, first lets create a new class which would contain the shared services, lets name it as BlogContext: public class BlogContext { public BlogInfo Blog { get; set; } public UserInfo User { get; set; } public IUrlResolver UrlResolver { get; set; } } Next, we will create an interface, IContextAwareService: public interface IContextAwareService { BlogContext Context { get; set; } } The idea is, whoever needs these shared services needs to implement this interface, in our case both the controller and the view model, now we will create an action filter which will be responsible for populating the context: public class PopulateBlogContextAttribute : FilterAttribute, IActionFilter { private static string blogNameRouteParameter = "blogName"; private readonly IBlogService blogService; private readonly IUserService userService; private readonly BlogContext context; public PopulateBlogContextAttribute(IBlogService blogService, IUserService userService, IUrlResolver urlResolver) { Invariant.IsNotNull(blogService, "blogService"); Invariant.IsNotNull(userService, "userService"); Invariant.IsNotNull(urlResolver, "urlResolver"); this.blogService = blogService; this.userService = userService; context = new BlogContext { UrlResolver = urlResolver }; } public static string BlogNameRouteParameter { [DebuggerStepThrough] get { return blogNameRouteParameter; } [DebuggerStepThrough] set { blogNameRouteParameter = value; } } public void OnActionExecuting(ActionExecutingContext filterContext) { string blogName = (string) filterContext.Controller.ValueProvider.GetValue(BlogNameRouteParameter).ConvertTo(typeof(string), Culture.Current); if (!string.IsNullOrWhiteSpace(blogName)) { context.Blog = blogService.FindByName(blogName); } if (context.Blog == null) { filterContext.Result = new NotFoundResult(); return; } if (filterContext.HttpContext.User.Identity.IsAuthenticated) { context.User = userService.FindByName(filterContext.HttpContext.User.Identity.Name); } IContextAwareService controller = filterContext.Controller as IContextAwareService; if (controller != null) { controller.Context = context; } } public void OnActionExecuted(ActionExecutedContext filterContext) { Invariant.IsNotNull(filterContext, "filterContext"); if ((filterContext.Exception == null) || filterContext.ExceptionHandled) { IContextAwareService model = filterContext.Controller.ViewData.Model as IContextAwareService; if (model != null) { model.Context = context; } } } } As you can see we are populating the context in the OnActionExecuting, which executes just before the controllers action methods executes, so by the time our action methods executes the context is already populated, next we are are assigning the same context in the view model in OnActionExecuted method which executes just after we set the  model and return the view in our action methods. Now, lets change the view models so that it implements this interface: public class IndexViewModel : IContextAwareService { // More Codes } public class ArchiveViewModel : IContextAwareService { // More Codes } public class TagViewModel : IContextAwareService { // More Codes } and the controller: public class PostController : Controller, IContextAwareService { public PostController(dependencies...) { } public BlogContext Context { get; set; } public ActionResult Index(int? page) { IEnumerable<PostInfo> posts = postService.FindPublished(Context.Blog.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCount(Context.Blog.Id); return View(new IndexViewModel(posts, count, page)); } public ActionResult Archive(int? page, ArchiveDate archiveDate) { IEnumerable<PostInfo> posts = postService.FindArchived(Context.Blog.Id, archiveDate, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetArchivedCount(Context.Blog.Id, archiveDate); return View(new ArchiveViewModel(posts, count, page, achiveDate)); } public ActionResult Tag(string blogName, string tagSlug, int? page) { TagInfo tag = tagService.FindBySlug(Context.Blog.Id, tagSlug); if (tag == null) { return new NotFoundResult(); } IEnumerable<PostInfo> posts = postService.FindPublishedByTag(Context.Blog.Id, tag.Id, PagingCalculator.StartIndex(page, Context.Blog.PostPerPage), Context.Blog.PostPerPage); int count = postService.GetPublishedCountByTag(tag.Id); return View(new TagViewModel(posts, count, page, tag)); } } Now, the last thing where we have to glue everything, I will be using the AspNetMvcExtensibility to register the action filter (as there is no better way to inject the dependencies in action filters). public class RegisterFilters : RegisterFiltersBase { private static readonly Type controllerType = typeof(Controller); private static readonly Type contextAwareType = typeof(IContextAwareService); protected override void Register(IFilterRegistry registry) { TypeCatalog controllers = new TypeCatalogBuilder() .Add(GetType().Assembly) .Include(type => controllerType.IsAssignableFrom(type) && contextAwareType.IsAssignableFrom(type)); registry.Register<PopulateBlogContextAttribute>(controllers); } } Thoughts and Comments?

    Read the article

  • SQL Azure Reporting Limited CTP Arrived

    - by Shaun
    It’s about 3 months later when I registered the SQL Azure Reporting CTP on the Microsoft Connect after TechED 2010 China. Today when I checked my mailbox I found that the SQL Azure team had just accepted my request and sent the activation code over to me. So let’s have a look on the new SQL Azure Reporting.   Concept The SQL Azure Reporting provides cloud-based reporting as a service, built on SQL Server Reporting Services and SQL Azure technologies. Cloud-based reporting solutions such as SQL Azure Reporting provide many benefits, including rapid provisioning, cost-effective scalability, high availability, and reduced management overhead for report servers; and secure access, viewing, and management of reports. By using the SQL Azure Reporting service, we can do: Embed the Visual Studio Report Viewer ADO.NET Ajax control or Windows Form control to view the reports deployed on SQL Azure Reporting Service in our web or desktop application. Leverage the SQL Azure Reporting SOAP API to manage and retrieve the report content from any kinds of application. Use the SQL Azure Reporting Service Portal to navigate and view the reports deployed on the cloud. Since the SQL Azure Reporting was built based on the SQL Server 2008 R2 Reporting Service, we can use any tools we are familiar with, such as the SQL Server Integration Studio, Visual Studio Report Viewer. The SQL Azure Reporting Service runs as a remote SQL Server Reporting Service just on the cloud rather than on a server besides us.   Establish a New SQL Azure Reporting Let’s move to the windows azure deveploer portal and click the Reporting item from the left side navigation bar. If you don’t have the activation code you can click the Sign Up button to send a requirement to the Microsoft Connect. Since I already recieved the received code mail I clicked the Provision button. Then after agree the terms of the service I will select the subscription for where my SQL Azure Reporting CTP should be provisioned. In this case I selected my free Windows Azure Pass subscription. Then the final step, paste the activation code and enter the password of our SQL Azure Reporting Service. The user name of the SQL Azure Reporting will be generated by SQL Azure automatically. After a while the new SQL Azure Reporting Server will be shown on our developer portal. The Reporting Service URL and the user name will be shown as well. We can reset the password from the toolbar button.   Deploy Report to SQL Azure Reporting If you are familiar with SQL Server Reporting Service you will find this part will be very similar with what you know and what you did before. Firstly we open the SQL Server Business Intelligence Development Studio and create a new Report Server Project. Then we will create a shared data source where the report data will be retrieved from. This data source can be SQL Azure but we can use local SQL Server or other database if it opens the port up. In this case we use a SQL Azure database located in the same data center of our reporting service. In the Credentials tab page we entered the user name and password to this SQL Azure database. The SQL Azure Reporting CTP only available at the North US Data Center now so that the related SQL Server and hosted service might be better to select the same data center to avoid the external data transfer fee. Then we create a very simple report, just retrieve all records from a table named Members and have a table in the report to list them. In the data source selection step we choose the shared data source we created before, then enter the T-SQL to select all records from the Member table, then put all fields into the table columns. The report will be like this as following In order to deploy the report onto the SQL Azure Reporting Service we need to update the project property. Right click the project node from the solution explorer and select the property item. In the Target Server URL item we will specify the reporting server URL of our SQL Azure Reporting. We can go back to the developer portal and select the reporting node from the left side, then copy the Web Service URL and paste here. But notice that we need to append “/reportserver” after pasted. Then just click the Deploy menu item in the context menu of the project, the Visual Studio will compile the report and then upload to the reporting service accordingly. In this step we will be prompted to input the user name and password of our SQL Azure Reporting Service. We can get the user name from the developer portal, just next to the Web Service URL in the SQL Azure Reporting page. And the password is the one we specified when created the reporting service. After about one minute the report will be deployed succeed.   View the Report in Browser SQL Azure Reporting allows us to view the reports which deployed on the cloud from a standard browser. We copied the Web Service URL from the reporting service main page and appended “/reportserver” in HTTPS protocol then we will have the SQL Azure Reporting Service login page. After entered the user name and password of the SQL Azure Reporting Service we can see the directories and reports listed. Click the report will launch the Report Viewer to render the report.   View Report in a Web Role with the Report Viewer The ASP.NET and Windows Form Report Viewer works well with the SQL Azure Reporting Service as well. We can create a ASP.NET Web Role and added the Report Viewer control in the default page. What we need to change to the report viewer are Change the Processing Mode to Remote. Specify the Report Server URL under the Server Remote category to the URL of the SQL Azure Reporting Web Service URL with “/reportserver” appended. Specify the Report Path to the report which we want to display. The report name should NOT include the extension name. For example my report was in the SqlAzureReportingTest project and named MemberList.rdl then the report path should be /SqlAzureReportingTest/MemberList. And the next one is to specify the SQL Azure Reporting Credentials. We can use the following class to wrap the report server credential. 1: private class ReportServerCredentials : IReportServerCredentials 2: { 3: private string _userName; 4: private string _password; 5: private string _domain; 6:  7: public ReportServerCredentials(string userName, string password, string domain) 8: { 9: _userName = userName; 10: _password = password; 11: _domain = domain; 12: } 13:  14: public WindowsIdentity ImpersonationUser 15: { 16: get 17: { 18: return null; 19: } 20: } 21:  22: public ICredentials NetworkCredentials 23: { 24: get 25: { 26: return null; 27: } 28: } 29:  30: public bool GetFormsCredentials(out Cookie authCookie, out string user, out string password, out string authority) 31: { 32: authCookie = null; 33: user = _userName; 34: password = _password; 35: authority = _domain; 36: return true; 37: } 38: } And then in the Page_Load method, pass it to the report viewer. 1: protected void Page_Load(object sender, EventArgs e) 2: { 3: ReportViewer1.ServerReport.ReportServerCredentials = new ReportServerCredentials( 4: "<user name>", 5: "<password>", 6: "<sql azure reporting web service url>"); 7: } Finally deploy it to Windows Azure and enjoy the report.   Summary In this post I introduced the SQL Azure Reporting CTP which had just available. Likes other features in Windows Azure, the SQL Azure Reporting is very similar with the SQL Server Reporting. As you can see in this post we can use the existing and familiar tools to build and deploy the reports and display them on a website. But the SQL Azure Reporting is just in the CTP stage which means It is free. There’s no support for it. Only available at the North US Data Center. You can get more information about the SQL Azure Reporting CTP from the links following SQL Azure Reporting Limited CTP at MSDN SQL Azure Reporting Samples at TechNet Wiki You can download the solutions and the projects used in this post here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Metro, Authentication, and the ASP.NET Web API

    - by Stephen.Walther
    Imagine that you want to create a Metro style app written with JavaScript and you want to communicate with a remote web service. For example, you are creating a movie app which retrieves a list of movies from a movies service. In this situation, how do you authenticate your Metro app and the Metro user so not just anyone can call the movies service? How can you identify the user making the request so you can return user specific data from the service? The Windows Live SDK supports a feature named Single Sign-On. When a user logs into a Windows 8 machine using their Live ID, you can authenticate the user’s identity automatically. Even better, when the Metro app performs a call to a remote web service, you can pass an authentication token to the remote service and prevent unauthorized access to the service. The documentation for Single Sign-On is located here: http://msdn.microsoft.com/en-us/library/live/hh826544.aspx In this blog entry, I describe the steps that you need to follow to use Single Sign-On with a (very) simple movie app. We build a Metro app which communicates with a web service created using the ASP.NET Web API. Creating the Visual Studio Solution Let’s start by creating a Visual Studio solution which contains two projects: a Windows Metro style Blank App project and an ASP.NET MVC 4 Web Application project. Name the Metro app MovieApp and the ASP.NET MVC application MovieApp.Services. When you create the ASP.NET MVC application, select the Web API template: After you create the two projects, your Visual Studio Solution Explorer window should look like this: Configuring the Live SDK You need to get your hands on the Live SDK and register your Metro app. You can download the latest version of the SDK (version 5.2) from the following address: http://www.microsoft.com/en-us/download/details.aspx?id=29938 After you download the Live SDK, you need to visit the following website to register your Metro app: https://manage.dev.live.com/build Don’t let the title of the website — Windows Push Notifications & Live Connect – confuse you, this is the right place. Follow the instructions at the website to register your Metro app. Don’t forget to follow the instructions in Step 3 for updating the information in your Metro app’s manifest. After you register, your client secret is displayed. Record this client secret because you will need it later (we use it with the web service): You need to configure one more thing. You must enter your Redirect Domain by visiting the following website: https://manage.dev.live.com/Applications/Index Click on your application name, click Edit Settings, click the API Settings tab, and enter a value for the Redirect Domain field. You can enter any domain that you please just as long as the domain has not already been taken: For the Redirect Domain, I entered http://superexpertmovieapp.com. Create the Metro MovieApp Next, we need to create the MovieApp. The MovieApp will: 1. Use Single Sign-On to log the current user into Live 2. Call the MoviesService web service 3. Display the results in a ListView control Because we use the Live SDK in the MovieApp, we need to add a reference to it. Right-click your References folder in the Solution Explorer window and add the reference: Here’s the HTML page for the Metro App: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>MovieApp</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> <!-- WebServices references --> <link href="/css/default.css" rel="stylesheet" /> <script src="/js/default.js"></script> </head> <body> <div id="tmplMovie" data-win-control="WinJS.Binding.Template"> <div class="movieItem"> <span data-win-bind="innerText:title"></span> <br /><span data-win-bind="innerText:director"></span> </div> </div> <div id="lvMovies" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplMovie') }"> </div> </body> </html> The HTML page above contains a Template and ListView control. These controls are used to display the movies when the movies are returned from the movies service. Notice that the page includes a reference to the Live script that we registered earlier: <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> The JavaScript code looks like this: (function () { "use strict"; var REDIRECT_DOMAIN = "http://superexpertmovieapp.com"; var WEBSERVICE_URL = "http://localhost:49743/api/movies"; function init() { WinJS.UI.processAll().done(function () { // Get element and control references var lvMovies = document.getElementById("lvMovies").winControl; // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then( function(response) { // Get the authentication token var authenticationToken = response.session.authentication_token; // Call the web service var options = { url: WEBSERVICE_URL, headers: { authenticationToken: authenticationToken } }; WinJS.xhr(options).done( function (xhr) { var movies = JSON.parse(xhr.response); var listMovies = new WinJS.Binding.List(movies); lvMovies.itemDataSource = listMovies.dataSource; }, function (xhr) { console.log(xhr.statusText); } ); }, function(response) { throw WinJS.ErrorFromName("Failed to login!"); } ); }); } document.addEventListener("DOMContentLoaded", init); })(); There are two constants which you need to set to get the code above to work: REDIRECT_DOMAIN and WEBSERVICE_URL. The REDIRECT_DOMAIN is the domain that you entered when registering your app with Live. The WEBSERVICE_URL is the path to your web service. You can get the correct value for WEBSERVICE_URL by opening the Project Properties for the MovieApp.Services project, clicking the Web tab, and getting the correct URL. The port number is randomly generated. In my code, I used the URL  “http://localhost:49743/api/movies”. Assuming that the user is logged into Windows 8 with a Live account, when the user runs the MovieApp, the user is logged into Live automatically. The user is logged in with the following code: // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then(function(response) { // Do something }); The scopes setting determines what the user has permission to do. For example, access the user’s SkyDrive or access the user’s calendar or contacts. The available scopes are listed here: http://msdn.microsoft.com/en-us/library/live/hh243646.aspx In our case, we only need the wl.signin scope which enables Single Sign-On. After the user signs in, you can retrieve the user’s Live authentication token. The authentication token is passed to the movies service to authenticate the user. Creating the Movies Service The Movies Service is implemented as an API controller in an ASP.NET MVC 4 Web API project. Here’s what the MoviesController looks like: using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using JWTSample; using MovieApp.Services.Models; namespace MovieApp.Services.Controllers { public class MoviesController : ApiController { const string CLIENT_SECRET = "NtxjF2wu7JeY1unvVN-lb0hoeWOMUFoR"; // GET api/values public HttpResponseMessage Get() { // Authenticate // Get authenticationToken var authenticationToken = Request.Headers.GetValues("authenticationToken").FirstOrDefault(); if (authenticationToken == null) { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Validate token var d = new Dictionary<int, string>(); d.Add(0, CLIENT_SECRET); try { var myJWT = new JsonWebToken(authenticationToken, d); } catch { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Return results return Request.CreateResponse( HttpStatusCode.OK, new List<Movie> { new Movie {Title="Star Wars", Director="Lucas"}, new Movie {Title="King Kong", Director="Jackson"}, new Movie {Title="Memento", Director="Nolan"} } ); } } } Because the Metro app performs an HTTP GET request, the MovieController Get() action is invoked. This action returns a set of three movies when, and only when, the authentication token is validated. The Movie class looks like this: using Newtonsoft.Json; namespace MovieApp.Services.Models { public class Movie { [JsonProperty(PropertyName="title")] public string Title { get; set; } [JsonProperty(PropertyName="director")] public string Director { get; set; } } } Notice that the Movie class uses the JsonProperty attribute to change Title to title and Director to director to make JavaScript developers happy. The Get() method validates the authentication token before returning the movies to the Metro app. To get authentication to work, you need to provide the client secret which you created at the Live management site. If you forgot to write down the secret, you can get it again here: https://manage.dev.live.com/Applications/Index The client secret is assigned to a constant at the top of the MoviesController class. The MoviesController class uses a helper class named JsonWebToken to validate the authentication token. This class was created by the Windows Live team. You can get the source code for the JsonWebToken class from the following GitHub repository: https://github.com/liveservices/LiveSDK/blob/master/Samples/Asp.net/AuthenticationTokenSample/JsonWebToken.cs You need to add an additional reference to your MVC project to use the JsonWebToken class: System.Runtime.Serialization. You can use the JsonWebToken class to get a unique and validated user ID like this: var user = myJWT.Claims.UserId; If you need to store user specific information then you can use the UserId property to uniquely identify the user making the web service call. Running the MovieApp When you first run the Metro MovieApp, you get a screen which asks whether the app should have permission to use Single Sign-On. This screen never appears again after you give permission once. Actually, when I first ran the app, I get the following error: According to the error, the app is blocked because “We detected some suspicious activity with your Online Id account. To help protect you, we’ve temporarily blocked your account.” This appears to be a bug in the current preview release of the Live SDK and there is more information about this bug here: http://social.msdn.microsoft.com/Forums/en-US/messengerconnect/thread/866c495f-2127-429d-ab07-842ef84f16ae/ If you click continue, and continue running the app, the error message does not appear again.  Summary The goal of this blog entry was to describe how you can validate Metro apps and Metro users when performing a call to a remote web service. First, I explained how you can create a Metro app which takes advantage of Single Sign-On to authenticate the current user against Live automatically. You learned how to register your Metro app with Live and how to include an authentication token in an Ajax call. Next, I explained how you can validate the authentication token – retrieved from the request header – in a web service. I discussed how you can use the JsonWebToken class to validate the authentication token and retrieve the unique user ID.

    Read the article

  • 10 Essential Tools for building ASP.NET Websites

    - by Stephen Walther
    I recently put together a simple public website created with ASP.NET for my company at Superexpert.com. I was surprised by the number of free tools that I ended up using to put together the website. Therefore, I thought it would be interesting to create a list of essential tools for building ASP.NET websites. These tools work equally well with both ASP.NET Web Forms and ASP.NET MVC. Performance Tools After reading Steve Souders two (very excellent) books on front-end website performance High Performance Web Sites and Even Faster Web Sites, I have been super sensitive to front-end website performance. According to Souders’ Performance Golden Rule: “Optimize front-end performance first, that's where 80% or more of the end-user response time is spent” You can use the tools below to reduce the size of the images, JavaScript files, and CSS files used by an ASP.NET application. 1. Sprite and Image Optimization Framework CSS sprites were first described in an article written for A List Apart entitled CSS sprites: Image Slicing’s Kiss of Death. When you use sprites, you combine multiple images used by a website into a single image. Next, you use CSS trickery to display particular sub-images from the combined image in a webpage. The primary advantage of sprites is that they reduce the number of requests required to display a webpage. Requesting a single large image is faster than requesting multiple small images. In general, the more resources – images, JavaScript files, CSS files – that must be moved across the wire, the slower your website. However, most people avoid using sprites because they require a lot of work. You need to combine all of the images and write just the right CSS rules to display the sub-images. The Microsoft Sprite and Image Optimization Framework enables you to avoid all of this work. The framework combines the images for you automatically. Furthermore, the framework includes an ASP.NET Web Forms control and an ASP.NET MVC helper that makes it easy to display the sub-images. You can download the Sprite and Image Optimization Framework from CodePlex at http://aspnet.codeplex.com/releases/view/50869. The Sprite and Image Optimization Framework was written by Morgan McClean who worked in the office next to mine at Microsoft. Morgan was a scary smart Intern from Canada and we discussed the Framework while he was building it (I was really excited to learn that he was working on it). Morgan added some great advanced features to this framework. For example, the Sprite and Image Optimization Framework supports something called image inlining. When you use image inlining, the actual image is stored in the CSS file. Here’s an example of what image inlining looks like: .Home_StephenWalther_small-jpg { width:75px; height:100px; background: url( GdBTUEAALGOfPtRkwAAACBjSFJNAACHDwAAjA8AAP1SAACBQAAAfXkAAOmLAAA85QAAGcxzPIV3AAAKL s+zNfREAAAAASUVORK5CYII=) no-repeat 0% 0%; } The actual image (in this case a picture of me that is displayed on the home page of the Superexpert.com website) is stored in the CSS file. If you visit the Superexpert.com website then very few separate images are downloaded. For example, all of the images with a red border in the screenshot below take advantage of CSS sprites: Unfortunately, there are some significant Gotchas that you need to be aware of when using the Sprite and Image Optimization Framework. There are workarounds for these Gotchas. I plan to write about these Gotchas and workarounds in a future blog entry. 2. Microsoft Ajax Minifier Whenever possible you should combine, minify, compress, and cache with a far future header all of your JavaScript and CSS files. The Microsoft Ajax Minifier makes it easy to minify JavaScript and CSS files. Don’t confuse minification and compression. You need to do both. According to Souders, you can reduce the size of a JavaScript file by an additional 20% (on average) by minifying a JavaScript file after you compress the file. When you minify a JavaScript or CSS file, you use various tricks to reduce the size of the file before you compress the file. For example, you can minify a JavaScript file by replacing long JavaScript variables names with short variables names and removing unnecessary white space and comments. You can minify a CSS file by doing such things as replacing long color names such as #ffffff with shorter equivalents such as #fff. The Microsoft Ajax Minifier was created by Microsoft employee Ron Logan. Internally, this tool was being used by several large Microsoft websites. We also used the tool heavily on the ASP.NET team. I convinced Ron to publish the tool on CodePlex so that everyone in the world could take advantage of it. You can download the tool from the ASP.NET Ajax website and read documentation for the tool here. I created the installer for the Microsoft Ajax Minifier. When creating the installer, I also created a Visual Studio build task to make it easy to minify all of your JavaScript and CSS files whenever you do a build within Visual Studio automatically. Read the Ajax Minifier Quick Start to learn how to configure the build task. 3. ySlow The ySlow tool is a free add-on for Firefox created by Yahoo that enables you to test the front-end of your website. For example, here are the current test results for the Superexpert.com website: The Superexpert.com website has an overall score of B (not perfect but not bad). The ySlow tool is not perfect. For example, the Superexpert.com website received a failing grade of F for not using a Content Delivery Network even though the website using the Microsoft Ajax Content Delivery Network for JavaScript files such as jQuery. Uptime After publishing a website live to the world, you want to ensure that the website does not encounter any issues and that it stays live. I use the following tools to monitor the Superexpert.com website now that it is live. 4. ELMAH ELMAH stands for Error Logging Modules and Handlers for ASP.NET. ELMAH enables you to record any errors that happen at your website so you can review them in the future. You can download ELMAH for free from the ELMAH project website. ELMAH works great with both ASP.NET Web Forms and ASP.NET MVC. You can configure ELMAH to store errors in a number of different stores including XML files, the Event Log, an Access database, a SQL database, an Oracle database, or in computer RAM. You also can configure ELMAH to email error messages to you when they happen. By default, you can access ELMAH by requesting the elmah.axd page from a website with ELMAH installed. Here’s what the elmah page looks like from the Superexpert.com website (this page is password-protected because secret information can be revealed in an error message): If you click on a particular error message, you can view the original Yellow Screen ASP.NET error message (even when the error message was never displayed to the actual user). I installed ELMAH by taking advantage of the new package manager for ASP.NET named NuGet (originally named NuPack). You can read the details about NuGet in the following blog entry by Scott Guthrie. You can download NuGet from CodePlex. 5. Pingdom I use Pingdom to verify that the Superexpert.com website is always up. You can sign up for Pingdom by visiting Pingdom.com. You can use Pingdom to monitor a single website for free. At the Pingdom website, you configure the frequency that your website gets pinged. I verify that the Superexpert.com website is up every 5 minutes. I have the Pingdom service verify that it can retrieve the string “Contact Us” from the website homepage. If your website goes down, you can configure Pingdom so that it sends an email, Twitter, SMS, or iPhone alert. I use the Pingdom iPhone app which looks like this: 6. Host Tracker If your website does go down then you need some way of determining whether it is a problem with your local network or if your website is down for everyone. I use a website named Host-Tracker.com to check how badly a website is down. Here’s what the Host-Tracker website displays for the Superexpert.com website when the website can be successfully pinged from everywhere in the world: Notice that Host-Tracker pinged the Superexpert.com website from 68 locations including Roubaix, France and Scranton, PA. Debugging I mean debugging in the broadest possible sense. I use the following tools when building a website to verify that I have not made a mistake. 7. HTML Spell Checker Why doesn’t Visual Studio have a built-in spell checker? Don’t know – I’ve always found this mysterious. Fortunately, however, a former member of the ASP.NET team wrote a free spell checker that you can use with your ASP.NET pages. I find a spell checker indispensible. It is easy to delude yourself that you are capable of perfect spelling. I’m always super embarrassed when I actually run the spell checking tool and discover all of my spelling mistakes. The fastest way to add the HTML Spell Checker extension to Visual Studio is to select the menu option Tools, Extension Manager within Visual Studio. Click on Online Gallery and search for HTML Spell Checker: 8. IIS SEO Toolkit If people cannot find your website through Google then you should not even bother to create it. Microsoft has a great extension for IIS named the IIS Search Engine Optimization Toolkit that you can use to identify issue with your website that would hurt its page rank. You also can use this tool to quickly create a sitemap for your website that you can submit to Google or Bing. You can even generate the sitemap for an ASP.NET MVC website. Here’s what the report overview for the Superexpert.com website looks like: Notice that the Sueprexpert.com website had plenty of violations. For example, there are 65 cases in which a page has a broken hyperlink. You can drill into these violations to identity the exact page and location where these violations occur. 9. LinqPad If your ASP.NET website accesses a database then you should be using LINQ to Entities with the Entity Framework. Using LINQ involves some magic. LINQ queries written in C# get converted into SQL queries for you. If you are not careful about how you write your LINQ queries, you could unintentionally build a really badly performing website. LinqPad is a free tool that enables you to experiment with your LINQ queries. It even works with Microsoft SQL CE 4 and Azure. You can use LinqPad to execute a LINQ to Entities query and see the results. You also can use it to see the resulting SQL that gets executed against the database: 10. .NET Reflector I use .NET Reflector daily. The .NET Reflector tool enables you to take any assembly and disassemble the assembly into C# or VB.NET code. You can use .NET Reflector to see the “Source Code” of an assembly even when you do not have the actual source code. You can download a free version of .NET Reflector from the Redgate website. I use .NET Reflector primarily to help me understand what code is doing internally. For example, I used .NET Reflector with the Sprite and Image Optimization Framework to better understand how the MVC Image helper works. Here’s part of the disassembled code from the Image helper class: Summary In this blog entry, I’ve discussed several of the tools that I used to create the Superexpert.com website. These are tools that I use to improve the performance, improve the SEO, verify the uptime, or debug the Superexpert.com website. All of the tools discussed in this blog entry are free. Furthermore, all of these tools work with both ASP.NET Web Forms and ASP.NET MVC. Let me know if there are any tools that you use daily when building ASP.NET websites.

    Read the article

  • UITableView issue when using separate delegate/dataSource

    - by Adam Alexander
    General Description: To start with what works, I have a UITableView which has been placed onto an Xcode-generated view using Interface Builder. The view's File Owner is set to an Xcode-generated subclass of UIViewController. To this subclass I have added working implementations of numberOfSectionsInTableView: tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath: and the Table View's dataSource and delegate are connected to this class via the File Owner in Interface Builder. The above configuration works with no problems. The issue occurs when I want to move this Table View's dataSource and delegate implementations out to a separate class, most likely because there are other controls on the View besides the Table View and I'd like to move the Table View-related code out to its own class. To accomplish this, I try the following: Create a new subclass of UITableViewController in Xcode Move the known-good implementations of numberOfSectionsInTableView: tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath: to the new subclass Drag a Table View Controller to the top level of the existing XIB in InterfaceBuilder, delete the View/TableView that are automatically created for this Table View Controller, then set the Table View Controller's class to match the new subclass Remove the previously-working Table View's existing dataSource and delegate connections and connect them to the new Table View Controller When complete, I do not have a working Table View. I end up with one of three outcomes which can seemingly happen at random: When the Table View loads, I get a runtime error indicating I am sending tableView:cellForRowAtIndexPath: to an object which does not recognize it When the Table View loads, the project breaks into the debugger without error There is no error, but the Table View does not appear With some debugging and having created a basic project just to reproduce this issue, I am usually seeing the 3rd option above (no error but no visible table view). I added some NSLog calls and found that although numberOfSectionsInTableView and numberOfRowsInSection are both getting called, cellForRowAtIndexPath is not. I am convinced I'm missing something really simple and was hoping the answer may be obvious to someone with more experience than I have. If this doesn't turn out to be an easy answer I would be happy to update with some code or a sample project. Thanks for your time! Complete steps to reproduce: Create a new iPhone OS, View-Based Application in Xcode and call it TableTest Open TableTestViewController.xib in Interface Builder and drag a Table View onto the provided view surface. Connect the Table View's dataSource and delegate outlets to File's Owner, which should already represent the TableTestViewController class. Save your changes Back in Xcode, add the following code to TableTestViewController.m: - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { NSLog(@"Returning num sections"); return 1; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { NSLog(@"Returning num rows"); return 1; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { NSLog(@"Trying to return cell"); static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero reuseIdentifier:CellIdentifier] autorelease]; } cell.text = @"Hello"; NSLog(@"Returning cell"); return cell; } Build and Go, and you should see the word Hello appear in the TableView Now to attempt to move this TableView's logic out to a separate class, first create a new file in Xcode, choosing UITableViewController subclass and calling the class TableTestTableViewController Remove the above code snippet from TableTestViewController.m and place it into TableTestTableViewController.m, replacing the default implementation of these three methods with ours. Back in Interface Builder within the same TableTestViewController.xib file, drag a Table View Controller into the main IB window and delete the new Table View object that automatically came with it Set the class for this new Table View Controller to TableTestTableViewController Remove the dataSource and delegate bindings from the existing, previously-working Table View and reconnect the same two bindings to the new Table Test Table View Controller we created. Save changes, Build and Go, and if you're getting the results I'm getting, note the Table View no longer functions properly Solution: With some more troubleshooting and some assistance from the iPhone Developer Forums at https://devforums.apple.com/message/5453, I've documented a solution! The main UIViewController subclass of the project needs an outlet pointing to the UITableViewController instance. To accomplish this, simply add the following to the primary view's header (TableTestViewController.h): #import "TableTestTableViewController.h" and IBOutlet TableTestTableViewController *myTableViewController; Then, in Interface Builder, connect the new outlet from File's Owner to Table Test Table View Controller in the main IB window. No changes are necessary in the UI part of the XIB. Simply having this outlet in place, even though no user code directly uses it, resolves the problem completely. Thanks to those who've helped and credit goes to BaldEagle on the iPhone Developer Forums for finding the solution.

    Read the article

  • FAQ: GridView Calculation with JavaScript

    - by Vincent Maverick Durano
    In my previous post I wrote a simple demo on how to Calculate Totals in GridView and Display it in the Footer. Basically what it does is it calculates the total amount by typing into the TextBox and display the grand total in the footer of the GridView and basically it was a server side implemenation.  Many users in the forums are asking how to do the same thing without postbacks and how to calculate both amount and total amount together. In this post I will demonstrate how to do this using JavaScript. To get started let's go ahead and set up the form. Just for the simplicity of this demo I just set up the form like this:   <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:Label ID="LBLPrice" runat="server" Text='<%# Eval("Price") %>'></asp:Label> </ItemTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server"></asp:TextBox> </ItemTemplate> <FooterTemplate> <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview>   As you can see there's no fancy about the mark up above. It just a standard GridView with BoundFields and TemplateFields on it. Now just for the purpose of this demo I just use a dummy data for populating the GridView. Here's the code below:   public partial class GridCalculation : System.Web.UI.Page { private void BindDummyDataToGrid() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Price", typeof(string))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Description"] = "Nike"; dr["Price"] = "1000"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Description"] = "Converse"; dr["Price"] = "800"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Description"] = "Adidas"; dr["Price"] = "500"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Description"] = "Reebok"; dr["Price"] = "750"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Description"] = "Vans"; dr["Price"] = "1100"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 6; dr["Description"] = "Fila"; dr["Price"] = "200"; dt.Rows.Add(dr); //Bind the Gridview GridView1.DataSource = dt; GridView1.DataBind(); } protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { BindDummyDataToGrid(); } } }   Now try to run the page. The output should look something like below: The Client-Side Calculation Here's the code for the GridView calculation:   <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; for (var i = 0; i < tb.length; i++) { if (tb[i].type == "text") { sub = parseFloat(lb[indexP].innerHTML) * parseFloat(tb[i].value); if (isNaN(sub)) { lb[i + indexQ].innerHTML = ""; sub = 0; } else { lb[i + indexQ].innerHTML = sub; } indexQ++; indexP = indexP + 2; total += parseFloat(sub); } } lb[lb.length -1].innerHTML = total; } </script>   The code above calculates the sub-total by multiplying the price and the quantity and at the same time calculates the total amount  by adding the sub-total values. Now you can simply call the JavaScript function above like this:   <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate>   Running the code above will display something like below: That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView,TipsTricks

    Read the article

  • Blend for Visual Studio 2013 Prototyping Applications with SketchFlow

    - by T
    Originally posted on: http://geekswithblogs.net/tburger/archive/2014/08/10/blend-for-visual-studio-2013-prototyping-applications-with-sketchflow.aspxSketchFlow enables rapid creating of dynamic interface mockups very quickly. The SketchFlow workspace is the same as the standard Blend workspace with the inclusion of three panels: the SketchFlow Feedback panel, the SketchFlow Animation panel and the SketchFlow Map panel. By using SketchFlow to prototype, you can get feedback early in the process. It helps to surface possible issues, lower development iterations, and increase stakeholder buy in. SketchFlow prototypes not only provide an initial look but also provide a way to add additional ideas and input and make sure the team is on track prior to investing in complete development. When you have completed the prototyping, you can discard the prototype and just use the lessons learned to design the application from or extract individual elements from your prototype and include them in the application. I don’t recommend trying to transition the entire project into a development project. Objects that you add with the SketchFlow style have a hand-sketched look. The sketch style is used to remind stakeholders that this is a prototype. This encourages them to focus on the flow and functionality without getting distracted by design details. The sketchflow assets are under sketchflow in the asset panel and are identifiable by the postfix “–Sketch”. For example “Button-Sketch”. You can mix sketch and standard controls in your interface, if required. Be creative, if there is a missing control or your interface has a different look and feel than the out of the box one, reuse other sketch controls to mimic the functionality or look and feel. Only use standard controls if it doesn’t distract from the idea that this is a prototype and not a standard application. The SketchFlow Map panel provides information about the structure of your application. To create a new screen in your prototype: Right-click the map surface and choose “Create a Connected Screen”. Name the screens with names that are meaningful to the stakeholders. The start screen is the one that has the green arrow. To change the start screen, right click on any other screen and set to start screen. Only one screen can be the start screen at a time. Rounded screen are component screens to mimic reusable custom controls that will be built into the final application. You can change the colors of all of the boxes and should use colors to create functional groupings. The groupings can be identified in the SketchFlow Project Settings. To add connections between screens in the SketchFlow Map panel. Move the mouse over a screen in the SketchFlow and a menu will appear at the bottom of the screen node. In the menu, click Connect to an existing screen. Drag the arrow to another screen on the Map. You add navigation to your prototype by adding connections on the SketchFlow map or by adding navigation directly to items on your interface. To add navigation from objects on the artboard, right click the item then from the menu, choose “Navigate to”. This will expose a sub-menu with available screens, backward, or forward. When the map has connected screens, the SketchFlow Player displays the connected screens on the Navigate sidebar. All screens show in the SketchFlow Player Map. To see the SketchFlow Player, run your SketchFlow prototype. The Navigation sidebar is meant to show the desired user work flow. The map can be used to view the different screens regardless of suggested navigation in the navigation bar. The map is able to be hidden and shown. As mentioned, a component screen is a shared screen that is used in more than one screen and generally represents what will be a custom object in the application. To create a component screen, you can create a screen, right click on it in the SketchFlow Map and choose “Make into component screen”. You can mouse over a screen and from the menu that appears underneath, choose create and insert component screen. To use an existing screen, select if from the Asset panel under SketchFlow, Components. You can use Storyboards and Visual State animations in your SketchFlow project. However, SketchFlow also offers its own animation technique that is simpler and better suited for prototyping. The SketchFlow Animation panel is above your artboard by default. In SketchFlow animation, you create frames and then position the elements on your interface for each frame. You then specify elapsed time and any effects you want to apply to the transition. The + at the top is what creates new frames. Once you have a new Frame, select it and change the property you want to animate. In the example above, I changed the Text of the result box. You can adjust the time between frames in the lower area between the frames. The easing and effects functions are changed in the center between each frame. You edit the hold time for frames by clicking the clock icon in the lower left and the hold time will appear on each frame and can be edited. The FluidLayout icon (also located in the lower left) will create smooth transitions. Next to the FluidLayout icon is the name of that Animation. You can rename the animation by clicking on it and editing the name. The down arrow chevrons next to the name allow you to view the list of all animations in this prototype and select them for editing. To add the animation to the interface object (such as a button to start the animation), select the PlaySketchFlowAnimationAction from the SketchFlow behaviors in the Assets menu and drag it to an object on your interface. With the PlaySketchFlowAnimationAction that you just added selected in the Objects and Timeline, edit the properties to change the EventName to the event you want and choose the SketchFlowAnimation you want from the drop down list. You may want to add additional information to your screens that isn’t really part of the prototype but is relevant information or a request for clarification or feedback from the reviewer. You do this with annotations or notes. Both appear on the user interface, however, annotations can be switched on or off at design and review time. Notes cannot be switched off. To add an Annotation, chose the Create Annotation from the Tools menu. The annotation appears on the UI where you will add the notes. To display or Hide annotations, click the annotation toggle at the bottom right on the artboard . After to toggle annotations on, the identifier of the person who created them appears on the artboard and you must click that to expand the notes. To add a note to the artboard, simply select the Note-Sketch from Assets ->SketchFlow ->Styles ->Sketch Styles. Drag and drop it to the artboard and place where you want it. When you are ready for users to review the prototype, you have a few options available. Click File -> Export and choose one of the options from the list: Publish to Sharepoint, Package SketchFlowProject, Export to Microsoft Word, or Export as Images. I suggest you play with as many of the options as you can to see what they do. Both the Sharepoint and Packaged SketchFlowProject allow you to collect feedback from one or more users that you can import into the project. The user can make notes on the UI and in the Feedback area in the bottom left corner of the player. When the user is done adding feedback, it is exported from the right most folder icon in the My Feedback panel. Feeback is imported on a panel named SketchFlow Feedback. To get that panel to show up, select Window -> SketchFlow Feedback. Once you have the panel showing, click the + in the upper right of the panel and find the notes you exported. When imported, they will show up in a list and on the artboard. To document your prototype, use the Export to Microsoft Word option from the File menu. That should get you started with prototyping.

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • [android] MediaRecorder prepare() causes segfault

    - by dwilde1
    Folks, I have a situation where my MediaRecorder instance causes a segfault. I'm working with a HTC Hero, Android 1.5+APIs. I've tried all variations, including 3gpp and H.263 and reducing the video resolution to 320x240. What am I missing? The state machine causes 4 MediaPlayer beeps and then turns on the video camera. Here's the pertinent source: UPDATE: ADDING SURFACE CREATE INFO I have rebooted the device based on previous answer to similar question. UPDATE 2: I seem to be following the MediaRecorder state machine perfectly, and if I trap out the MR code, the blank surface displays perfectly and everything else functions perfectly. I can record videos manually and play back via MediaPlayer in my code, so there should be nothing wrong with the underlying code. I've copied sample code on the surface and surfaceHolder code. I've looked at the MR instance in the Debug perspective in Eclipse and see that all (known) variables seem to be instantiated correctly. The setter calls are all now implemented in the exaxct order specced in the state diagram. // in activity class definition protected MediaPlayer mPlayer; protected MediaRecorder mRecorder; protected boolean inCapture = false; protected int phaseCapture = 0; protected int durCapturePhase = INF; protected SurfaceView surface; protected SurfaceHolder surfaceHolder; // in onCreate() // panelPreview is an empty LinearLayout surface = new SurfaceView(getApplicationContext()); surfaceHolder = surface.getHolder(); surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); panelPreview.addView(surface); // in timer handler runnable if (mRecorder == null) mRecorder = new MediaRecorder(); mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC); mRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA); mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); mRecorder.setOutputFile(path + "/" + vlip); mRecorder.setVideoSize(320, 240); mRecorder.setVideoFrameRate(15); mRecorder.setPreviewDisplay(surfaceHolder.getSurface()); panelPreview.setVisibility(LinearLayout.VISIBLE); mRecorder.prepare(); mRecorder.start(); Here is a complete log trace for the process run and crash: I/ActivityManager( 80): Start proc com.ejf.convince.jenplus for activity com.ejf.convince.jenplus/.JenPLUS: pid=17738 uid=10075 gids={1006, 3003} I/jdwp (17738): received file descriptor 10 from ADB W/System.err(17738): Can't dispatch DDM chunk 46454154: no handler defined W/System.err(17738): Can't dispatch DDM chunk 4d505251: no handler defined I/WindowManager( 80): Screen status=true, current orientation=-1, SensorEnabled=false I/WindowManager( 80): needSensorRunningLp, mCurrentAppOrientation =-1 I/WindowManager( 80): Enabling listeners W/ActivityThread(17738): Application com.ejf.convince.jenplus is waiting for the debugger on port 8100... I/System.out(17738): Sending WAIT chunk I/dalvikvm(17738): Debugger is active I/AlertDialog( 80): [onCreate] auto launch SIP. I/WindowManager( 80): onOrientationChanged, rotation changed to 0 I/System.out(17738): Debugger has connected I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): debugger has settled (1370) I/ActivityManager( 80): Displayed activity com.ejf.convince.jenplus/.JenPLUS: 5186 ms I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/AudioHardwareMSM72XX( 2696): AUDIO_START: start kernel pcm_out driver. W/AudioFlinger( 2696): write blocked for 96 msecs I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 W/AuthorDriver( 2696): Intended width(640) exceeds the max allowed width(352). Max width is used instead. W/AuthorDriver( 2696): Intended height(480) exceeds the max allowed height(288). Max height is used instead. I/AudioHardwareMSM72XX( 2696): AudioHardware pcm playback is going to standby. I/DEBUG (16094): *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** I/DEBUG (16094): Build fingerprint: 'sprint/htc_heroc/heroc/heroc: 1.5/CUPCAKE/85027:user/release-keys' I/DEBUG (16094): pid: 17738, tid: 17738 com.ejf.convince.jenplus Thanks in advance! -- Don Wilde http://www.ConvinceProject.com

    Read the article

  • MVC 3 AdditionalMetadata Attribute with ViewBag to Render Dynamic UI

    - by Steve Michelotti
    A few months ago I blogged about using Model metadata to render a dynamic UI in MVC 2. The scenario in the post was that we might have a view model where the questions are conditionally displayed and therefore a dynamic UI is needed. To recap the previous post, the solution was to use a custom attribute called [QuestionId] in conjunction with an “ApplicableQuestions” collection to identify whether each question should be displayed. This allowed me to have a view model that looked like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [QuestionId("NB0021")] 4: public string FirstName { get; set; } 5: 6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [QuestionId("NB0022")] 9: public string LastName { get; set; } 10: 11: [UIHint("ScalarQuestion")] 12: [QuestionId("NB0023")] 13: public int Age { get; set; } 14: 15: public IEnumerable<string> ApplicableQuestions { get; set; } At the same time, I was able to avoid repetitive IF statements for every single question in my view: 1: <%: Html.EditorFor(m => m.FirstName, new { applicableQuestions = Model.ApplicableQuestions })%> 2: <%: Html.EditorFor(m => m.LastName, new { applicableQuestions = Model.ApplicableQuestions })%> 3: <%: Html.EditorFor(m => m.Age, new { applicableQuestions = Model.ApplicableQuestions })%> by creating an Editor Template called “ScalarQuestion” that encapsulated the IF statement: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <%@ Import Namespace="DynamicQuestions.Models" %> 3: <%@ Import Namespace="System.Linq" %> 4: <% 5: var applicableQuestions = this.ViewData["applicableQuestions"] as IEnumerable<string>; 6: var questionAttr = this.ViewData.ModelMetadata.ContainerType.GetProperty(this.ViewData.ModelMetadata.PropertyName).GetCustomAttributes(typeof(QuestionIdAttribute), true) as QuestionIdAttribute[]; 7: string questionId = null; 8: if (questionAttr.Length > 0) 9: { 10: questionId = questionAttr[0].Id; 11: } 12: if (questionId != null && applicableQuestions.Contains(questionId)) { %> 13: <div> 14: <%: Html.Label("") %> 15: <%: Html.TextBox("", this.Model)%> 16: </div> 17: <% } %> You might want to go back and read the full post in order to get the full context. MVC 3 offers a couple of new features that make this scenario more elegant to implement. The first step is to use the new [AdditionalMetadata] attribute which, so far, appears to be an under appreciated new feature of MVC 3. With this attribute, I don’t need my custom [QuestionId] attribute anymore - now I can just write my view model like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [AdditionalMetadata("QuestionId", "NB0021")] 4: public string FirstName { get; set; } 5:   6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [AdditionalMetadata("QuestionId", "NB0022")] 9: public string LastName { get; set; } 10:   11: [UIHint("ScalarQuestion")] 12: [AdditionalMetadata("QuestionId", "NB0023")] 13: public int Age { get; set; } Thus far, the documentation seems to be pretty sparse on the AdditionalMetadata attribute. It’s buried in the Other New Features section of the MVC 3 home page and, after showing the attribute on a view model property, it just says, “This metadata is made available to any display or editor template when a product view model is rendered. It is up to you to interpret the metadata information.” But what exactly does it look like for me to “interpret the metadata information”? Well, it turns out it makes the view much easier to work with. Here is the re-implemented ScalarQuestion template updated for MVC 3 and Razor: 1: @{ 2: object questionId; 3: ViewData.ModelMetadata.AdditionalValues.TryGetValue("QuestionId", out questionId); 4: if (ViewBag.applicableQuestions.Contains((string)questionId)) { 5: <div> 6: @Html.LabelFor(m => m) 7: @Html.TextBoxFor(m => m) 8: </div> 9: } 10: } So we’ve gone from 17 lines of code (in the MVC 2 version) to about 7-8 lines of code here. The first thing to notice is that in MVC 3 we now have a property called “AdditionalValues” that hangs off of the ModelMetadata property. This is automatically populated by any [AdditionalMetadata] attributes on the property. There is no more need for me to explicitly write Reflection code to GetCustomAttributes() and then check to see if those attributes were present. I can just call TryGetValue() on the dictionary to see if they were present. Secondly, the “applicableQuestions” anonymous type that I passed in from the calling view – in MVC 3 I now have a dynamic ViewBag property where I can just “dot into” the applicableQuestions with a nicer syntax than dictionary square bracket syntax. And there’s no problems calling the Contains() method on this dynamic object because at runtime the DLR has resolved that it is a generic List<string>. At this point you might be saying that, yes the view got much nicer than the MVC 2 version, but my view model got slightly worse.  In the previous version I had a nice [QuestionId] attribute but now, with the [AdditionalMetadata] attribute, I have to type the string “QuestionId” for every single property and hope that I don’t make a typo. Well, the good news is that it’s easy to create your own attributes that can participate in the metadata’s additional values. The key is that the attribute must implement that IMetadataAware interface and populate the AdditionalValues dictionary in the OnMetadataCreated() method: 1: public class QuestionIdAttribute : Attribute, IMetadataAware 2: { 3: public string Id { get; set; } 4:   5: public QuestionIdAttribute(string id) 6: { 7: this.Id = id; 8: } 9:   10: public void OnMetadataCreated(ModelMetadata metadata) 11: { 12: metadata.AdditionalValues["QuestionId"] = this.Id; 13: } 14: } This now allows me to encapuslate my “QuestionId” string in just one place and get back to my original attribute which can be used like this: [QuestionId(“NB0021”)]. The [AdditionalMetadata] attribute is a powerful and under-appreciated new feature of MVC 3. Combined with the dynamic ViewBag property, you can do some really interesting things with your applications with less code and ceremony.

    Read the article

  • RSS feeds in Orchard

    - by Bertrand Le Roy
    When we added RSS to Orchard, we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example of such feed exposition is of course blog feeds. We have an IFeedManager interface for which you can get the built-in implementation through dependency injection. Look at the BlogController constructor for an example: public BlogController( IOrchardServices services, IBlogService blogService, IBlogSlugConstraint blogSlugConstraint, IFeedManager feedManager, RouteCollection routeCollection) { If you look a little further in that same controller, in the Item action, you’ll see a call to the Register method of the feed manager: _feedManager.Register(blog); This in reality is a call into an extension method that is specialized for blogs, but we could have made the two calls to the actual generic Register directly in the action instead, that is just an implementation detail: feedManager.Register(blog.Name, "rss", new RouteValueDictionary { { "containerid", blog.Id } }); feedManager.Register(blog.Name + " - Comments", "rss", new RouteValueDictionary { { "commentedoncontainer", blog.Id } }); What those two effective calls are doing is to register two feeds: one for the blog itself and one for the comments on the blog. For each call, the name of the feed is provided, then we have the type of feed (“rss”) and some values to be injected into the generic RSS route that will be used later to route the feed to the right providers. This is all you have to do to expose a new feed. If you’re only interested in exposing feeds, you can stop right there. If on the other hand you want to know what happens after that under the hood, carry on. What happens after that is that the feedmanager will take care of formatting the link tag for the feed (see FeedManager.GetRegisteredLinks). The GetRegisteredLinks method itself will be called from a specialized filter, FeedFilter. FeedFilter is an MVC filter and the event we’re interested in hooking into is OnResultExecuting, which happens after the controller action has returned an ActionResult and just before MVC executes that action result. In other words, our feed registration has already been called but the view is not yet rendered. Here’s the code for OnResultExecuting: model.Zones.AddAction("head:after", html => html.ViewContext.Writer.Write( _feedManager.GetRegisteredLinks(html))); This is another piece of code whose execution is differed. It is saying that whenever comes time to render the “head” zone, this code should be called right after. The code itself is rendering the link tags. As a result of all that, here’s what can be found in an Orchard blog’s head section: <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire"     href="/rss?containerid=5" /> <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire - Comments"     href="/rss?commentedoncontainer=5" /> The generic action that these two feeds point to is Index on FeedController. That controller has three important dependencies: an IFeedBuilderProvider, an IFeedQueryProvider and an IFeedItemProvider. Different implementations of these interfaces can provide different formats of feeds, such as RSS and Atom. The Match method enables each of the competing providers to provide a priority for themselves based on arbitrary criteria that can be found on the FeedContext. This means that a provider can be selected based not only on the desired format, but also on the nature of the objects being exposed as a feed or on something even more arbitrary such as the destination device (you could imagine for example giving shorter text only excerpts of posts on mobile devices, and full HTML on desktop). The key here is extensibility and dynamic competition and collaboration from unknown and loosely coupled parts. You’ll find this pattern pretty much everywhere in the Orchard architecture. The RssFeedBuilder implementation of IFeedBuilderProvider is also a regular controller with a Process action that builds a RssResult, which is itself a thin ActionResult wrapper around an XDocument. Let’s get back to the FeedController’s Index action. After having called into each known feed builder to get its priority on the currently requested feed, it will select the one with the highest priority. The next thing it needs to do is to actually fetch the data for the feed. This again is a collaborative effort from a priori unknown providers, the implementations of IFeedQueryProvider. There are several implementations by default in Orchard, the choice of which is again done through a Match method. ContainerFeedQuery for example chimes in when a “containerid” parameter is found in the context (see URL in the link tag above): public FeedQueryMatch Match(FeedContext context) { var containerIdValue = context.ValueProvider.GetValue("containerid"); if (containerIdValue == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } The actual work is done in the Execute method, which finds the right container content item in the Orchard database and adds elements for each of them. In other words, the feed query provider knows how to retrieve the list of content items to add to the feed. The last step is to translate each of the content items into feed entries, which is done by implementations of IFeedItemBuilder. There is no Match method this time. Instead, all providers are called with the collection of items (or more accurately with the FeedContext, but this contains the list of items, which is what’s relevant in most cases). Each provider can then choose to pick those items that it knows how to treat and transform them into the format requested. This enables the construction of heterogeneous feeds that expose content items of various types into a single feed. That will be extremely important when you’ll want to expose a single feed for all your site. So here are feeds in Orchard in a nutshell. The main point here is that there is a fair number of components involved, with some complexity in implementation in order to allow for extreme flexibility, but the part that you use to expose a new feed is extremely simple and light: declare that you want your content exposed as a feed and you’re done. There are cases where you’ll have to dive in and provide new implementations for some or all of the interfaces involved, but that requirement will only arise as needed. For example, you might need to create a new feed item builder to include your custom content type but that effort will be extremely focused on the specialized task at hand. The rest of the system won’t need to change. So what do you think?

    Read the article

< Previous Page | 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053  | Next Page >