Search Results

Search found 21802 results on 873 pages for 'erx vb next coder'.

Page 361/873 | < Previous Page | 357 358 359 360 361 362 363 364 365 366 367 368  | Next Page >

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Book Review: Professional ASP.NET Design Patterns by Scott Millett

    - by Sam Abraham
    In the next few lines, I will be providing a brief review of Wrox’s Professional ASP.NET Design Patterns by Scott Millett. Design patterns have been a hot topic for many years as developers looked to do more with less, re-use as much code as possible by creating common libraries, as well as make their code easier to understand, extend and collaborate on. Scott Millett’s book covered classic and emerging patterns in a practical presentation that demonstrated with thorough examples how to put each pattern to use in the context of multi-tiered ASP.NET applications. The author’s unique approach and content earned him much kudos in the foreword by Scott Hanselman as well as online reviews. The book has 14 chapters of which 5 are dedicated to a comprehensive case study. Patterns covered therein include S.O.L.I.D, Gang of Four (GoF) as well as Martin Fowler’s Patterns of Enterprise Applications. Many thanks to the Wiley/Wrox User Group Program for their support of our West Palm Beach Developers’ Group. Best regards, --Sam You can access my reviews of books I recently read: Professional WCF 4.0 Inside Windows Communication Foundation Inside Microsoft SQL Server 2008 series

    Read the article

  • The Case of the Extra Page: Rendering Reporting Services as PDF

    - by smisner
    I had to troubleshoot a problem with a mysterious extra page appearing in a PDF this week. My first thought was that it was likely to caused by one of the most common problems that people encounter when developing reports that eventually get rendered as PDF is getting blank pages inserted into the PDF document. The cause of the blank pages is usually related to sizing. You can learn more at Understanding Pagination in Reporting Services in Books Online. When designing a report, you have to be really careful with the layout of items in the body. As you move items around, the body will expand to accommodate the space you're using and you might eventually tighten everything back up again, but the body doesn't automatically collapse. One of my favorite things to do in Reporting Services 2005 - which I dubbed the "vacu-pack" method - was to just erase the size property of the Body and let it auto-calculate the new size, squeezing out all the extra space. Alas, that method no longer works beginning with Reporting Services 2008. Even when you make sure the body size is as small as possible (with no unnecessary extra space along the top, bottom, left, or right side of the body), it's important to calculate the body size plus header plus footer plus the margins and ensure that the calculated height and width do not exceed the report's height and width (shown as the page in the illustration above). This won't matter if users always render reports online, but they'll get extra pages in a PDF document if the report's height and width are smaller than the calculate space. Beginning the Investigation In the situation that I was troubleshooting, I checked the properties: Item Property Value Body Height 6.25in   Width 10.5in Page Header Height 1in Page Footer Height 0.25in Report Left Margin 0.1in   Right Margin 0.1in   Top Margin 0.05in   Bottom Margin 0.05in   Page Size - Height 8.5in   Page Size - Width 11in So I calculated the total width using Body Width + Left Margin + Right Margin and came up with a value of 10.7 inches. And then I calculated the total height using Body Height + Page Header Height + Page Footer Height + Top Margin + Bottom Margin and got 7.6 inches. Well, page sizing couldn't be the reason for the extra page in my report because 10.7 inches is smaller than the report's width of 11 inches and 7.6 inches is smaller than the report's height of 8.5 inches. I had to look elsewhere to find the culprit. Conducting the Third Degree My next thought was to focus on the rendering size of the items in the report. I've adapted my problem to use the Adventure Works database. At the top of the report are two charts, and then below each chart is a rectangle that contains a table. In the real-life scenario, there were some graphics present as a background for the tables which fit within the rectangles that were about 3 inches high so the visual space of the rectangles matched the visual space of the charts - also about 3 inches high. But there was also a huge amount of white space at the bottom of the page, and as I mentioned at the beginning of this post, a second page which was blank except for the footer that appeared at the bottom. Placing a textbox beneath the rectangles to see if they would appear on the first page resulted the textbox's appearance on the second page. For some reason, the rectangles wanted a buffer zone beneath them. What's going on? Taking the Suspect into Custody My next step was to see what was really going on with the rectangle. The graphic appeared to be correctly sized, but the behavior in the report indicated the rectangle was growing. So I added a border to the rectangle to see what it was doing. When I added borders, I could see that the size of each rectangle was growing to accommodate the table it contains. The rectangle on the right is slightly larger than the one on the left because the table on the right contains an extra row. The rectangle is trying to preserve the whitespace that appears in the layout, as shown below. Closing the Case Now that I knew what the problem was, what could I do about it? Because of the graphic in the rectangle (not shown), I couldn't eliminate the use of the rectangles and just show the tables. But fortunately, there is a report property that comes to the rescue: ConsumeContainerWhitespace (accessible only in the Properties window). I set the value of this property to True. Problem solved. Now the rectangles remain fixed at the configured size and don't grow vertically to preserve the whitespace. Case closed.

    Read the article

  • Sorting and Paging a Grid of Data in ASP.NET MVC

    This article is the fifth installment in an ongoing series on displaying a grid of data in an ASP.NET MVC application. Previous articles in this series examined how to sort, page, and filter a grid of data, but none have looked at combining one or more of these features in a single grid. This article and the next one show how to merge these features into a single grid. In particular, this article looks at displaying a grid that can handle both sorting and paging. The subsequent article will examine combining sorting, paging and filtering. Like with its predecessors, this article offers step-by-step instructions and includes a complete, working demo available for download at the end of the article. Read on to learn more! Read More >

    Read the article

  • Oracle Delivers Latest Release of Oracle Enterprise Manager 12c

    - by Scott McNeil
    Richer Service Catalog for Database and Middleware as a Service; Enhanced Database and Middleware Management Help Drive Enterprise-Scale Private Cloud Adoption News Summary IT organizations are adopting private clouds as a stepping-stone to business-driven, self-service IT. Successful implementations hinge on the ability to efficiently deploy and manage cloud services at enterprise scale. Having a complete cloud management solution integrated with an enterprise-class technology stack is a fundamental requirement for IT. Oracle Enterprise Manager 12c Release 4 meets that requirement by helping businesses become more agile and responsive, while reducing cost, complexity, and risk. News Facts Oracle Enterprise Manager 12c Release 4, available today, lets organizations rapidly adopt Oracle-based, enterprise-scale private clouds. New capabilities provide advanced technology stack management, secure database administration, and enterprise service governance, enabling Oracle customers and partners to maximize database and application performance and drive innovation using self-service IT platforms. The enhancements have been driven by customers and the growing Oracle Enterprise Manager Ecosystem, comprised of more than 750 Oracle PartnerNetwork (OPN) Specialized partners. Oracle and its partners and customers have built over 140 plug-ins and connectors for Oracle Enterprise Manager. Watch the video highlights. Automation for Broader Cloud Services Oracle Enterprise Manager 12c Release 4 allows for a rapid enterprise-wide adoption of database, middleware and infrastructure services in the private cloud, driven by an enhanced API-enabled service catalog. The release features “push button” style provisioning of complete environments such as SOA and Oracle Active Data Guard, and fast data cloning that enables rapid deployment and testing of enterprise applications. Out-of-the-box capabilities to detect data and configuration vulnerabilities provide enhanced cloud service governance along with greater operational control through a flexible and extensible showback mechanism. Enhanced Database Management A new performance warehouse enables predictive database diagnostics and trend analysis and helps identify database problems before they occur. New enterprise data-governance capabilities enhance security by helping systematically discover and protect sensitive data. Step-by-step orchestration of upgrades with the ability to rollback changes enables faster adoption of Oracle Database 12c. Expanded Fusion Middleware Management A new consolidated view of Oracle Fusion Middleware 12c deployments with a guided management capability lets administrators apply best management practices to diverse middleware environments and identify performance issues quickly. A Java VM Diagnostics as a Service feature allows governed access to diagnostics data for IT workers across multiple disciplines for accelerated DevOps resolutions of defects and performance optimization. New automated provisioning for SOA lets middleware administrators perform mass SOA provisioning with ease. Superior Enterprise-Grade Management Private roles and preferred credentials have been added to Oracle Enterprise Manager to provide additional fine-grained security for organizations with complex access control requirements. A new security console provides a single point of control for managing the security of Oracle Enterprise Manager environments. Support for the latest industry standard SNMP v3 protocol, including encryption, enables more secure heterogeneous management. “Smart monitoring” adapts to observed environmental changes and adds self-management capabilities to help Oracle Enterprise Manager run at peak performance, while demanding less IT supervision. Supporting Quotes “Lawrence Livermore National Laboratory has a strong tradition of technology breakthroughs and leadership. As a member of Oracle’s Customer Advisory Board for Oracle Enterprise Manager, we have consistently provided feedback and guidance in the areas of enterprise-scale cloud, self-diagnosability, and secure administration for the product,” said Tim Frazier, CIO, NIF and Photon Sciences, Lawrence Livermore National Laboratory. “We intend to take advantage of the Release 4 features that support enterprise-scale availability and fine-grained security capabilities for private cloud deployments.” “IDC's most recent CloudTrack survey shows that most enterprises plan to adopt hybrid cloud architectures over the next three years,” said Mary Johnston Turner, Research Vice President, Enterprise System Management Software, IDC. “These organizations plan to deploy a wide range of workloads into cloud environments including mission critical database and middleware services that require high levels of fault tolerance and disaster recovery. Such capabilities were traditionally custom configured for each application but cloud offers the possibility to incorporate such properties within the service definition, enabling organizations to adopt cloud without compromise. With the latest release of Oracle Enterprise Manager 12c, Oracle is providing customers with an out-of-the-box experience for delivering highly-resilient cloud services for databases and applications.” “Since its inception, Oracle has been leading the way in innovative, scalable and high performance solutions for the enterprise. With this release of Oracle Enterprise Manager, we are extending this leadership by providing enterprise-scale capabilities for planning, delivering, and managing private clouds. We call this ‘zero-to-cloud – accelerated.’ These enhancements help our customers to expedite their adoption of cloud computing and prepares them for the next generation of self-service IT,” said Prakash Ramamurthy, senior vice president of Systems and Cloud Management at Oracle. Supporting Resources Oracle Enterprise Manager 12c Video: Cerner Delivers High Performance Private Cloud Video: BIAS Achieves Outstanding Results with Private Cloud Press Release Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager 12c Mobile app

    Read the article

  • Chrome Apps Office Hours

    Chrome Apps Office Hours Ask and vote for questions here: goo.gl Now that you've got a handle on what Chrome Apps are and what they can do, we're going to build an app live, and dive into the new Windowing API to show you how you can completely configure the look and feel of your Chrome App window. We'll also explain more about Content Security Policy, and how it might affect your development. Remember, we want to hear from you! What are the APIs that you're most interested and excited about? Tell us at goo.gl so we can cover the things you're most interested in first! Be sure to add this event to your calendar and tune in next Tuesday! From: GoogleDevelopers Views: 1504 36 ratings Time: 44:00 More in Science & Technology

    Read the article

  • Firefox 4.0 Error [closed]

    - by Nik
    Possible Duplicate: Firefox crashes very often - Attempting to load the system libmoon Hi, I am running ubuntu 10.10 and installed firefox 4.0 beta 10 using the ppa:mozillateam/firefox-next, by running the command sudo apt-get install firefox-4.0. However whenever I try running it, it starts up and then within 2 seconds it crashes without any warning. I also don't get the usual warning whether to send the crash report to firefox or not. So I tried running firefox-4.0 using the terminal and I get the following the error message. Attempting to load the system libmoon Segmentation fault What do it mean? And what do I do to fix this error? I really want to try the latest firefox beta in ubuntu.

    Read the article

  • VirtualBox

    - by DesigningCode
    I was wanting to play around with something in a VM the other day.  I was curious what was available for free, if anything, for windows.   I quickly came across Virtual Box  ( http://www.virtualbox.org/ ).   Downloaded, Installed. No Problem!  Works really nicely.   It was commercial software (by sun (now oracle)) that turned open source.   In terms of a license it says :- In summary, the VirtualBox PUEL allows you to use VirtualBox free of charge for personal use or, alternatively, for product evaluation. An interesting feature it has is built in RDP.   Which is useful if you have a guest OS that doesn’t support RDP.   Speaking of RDP…..  which I will in my next blog post… I learnt something REALLY useful the other day.

    Read the article

  • How to write a user story specific to tasks in this case

    - by vignesh
    We have planned to take up an user story say As a player I want to view the game map to know current standings of my team The sprint is for two weeks. We will be able to complete only HTML in two weeks time, this user story will take 4-6 weeks to be completed as we have a shortage of content designing resources. How can we change this user story so that HTML completion can be considered as a done for this user story and we need to take up the integration of this user story in the next sprint? Is it possible to create two different user stories, one for HTML and other for integration, testing, bug fixing etc?

    Read the article

  • Third-Grade Math Class

    - by andyleonard
    An Odd Thing Happened... ... when I was in third grade math class: I was handed a sheet of arithmetic problems to solve. There were maybe 20 problems on the page and we were given the remainder of the class to complete them. I don't remember how much time remained in the class, I remember I finished working on the problems before my classmates. That wasn't the odd part. The odd part was that I started working on the first problem, concentrating pretty hard. I worked the sum and moved to the next...(read more)

    Read the article

  • Cheap, Awesome, Programmer-friendly City in Europe for 1 year Study Hiatus?

    - by Gonjasufi
    Next year I'll be 21. I'll have 3 years of professional experience under my belt (with a one year break as a soldier). I'm planning to take 2 to 3 years off. Instead of going to a university I'm planning to work on personal projects and learn on my own. I'm looking for suggestions of great, cheap, programmer-friendly (e.g. lots of cafes, ordered food, parks, blazing fast internet connection, wifi, lots of people that speak English) cities around the world, (and specifically in Europe as I also have european citizenship). If you can supply with an estimate cost of living for that city, or a site for comparisons that will also be great. edit: I'm living in Tel Aviv, ~20 highest cost of living city in the world, so statistically speaking almost all the cities are cheaper.

    Read the article

  • Why Google skips page title

    - by Bob
    I have no idea why this is happening. An example http://www.londonofficespace.com/ofdj17062004934429t.htm Title tag is: Unfurnished Office Space Wimbledon – Serviced Office on Lombard Road SW19 But is indexed as: Lombard Road – SW19 - London Office Space If you look in the source code and search for this portion ‘Lombard Road – SW19’ You then find that it's next to an office image alt=’Lombard Road – SW19’. The only thing I could think of is that the spider somehow ‘skips’ our title tag and grabs this bit, and then inserts the name of the site (but WHY?) Is there anything I can do with this? or is this a Google behaviour?

    Read the article

  • How do software updates work on Ubuntu?

    - by Jonas
    I would like to know how software updates work for my Ubuntu Server 10.10. I have been recommended to use apt-get install for installing new software and apt-get update for updating software for a Ubuntu Server in production use. Because these packages are tested for Ubuntu in contrast to download source code and compile the software on the box. But on my Ubuntu Server 10.10, I don't get the latest stable version of PostgreSQL (9) or the latest stable version of Nginx (8) using apt-get install. So how is this working, will these software be updated when I later run apt-get update or do I have to later run apt-get install again, or do I have to wait for the next release of Ubuntu to get them? And are patches and security updates managed in the same way? Or can they be updated automatically? If there is such a setting, how do I check what my system is using?

    Read the article

  • Can Unity be uninstalled?

    - by Dave M G
    Recently when doing an update, I noticed I was downloading a bunch of packages related to Unity. I use Gnome-Classic, and have no intention of ever using Unity. So, I thought I might save myself some bandwidth and download times (which can be slow on my laptop) by removing Unity. However, on next reboot, I could not get any form of GUI interface. Only by reinstalling Unity was I able to get the log in interface and get back into Gnome Classic. Can I get rid of Unity, or is it somehow now integral to Ubuntu in a way that makes Ubuntu not run without it (even if I'm exlusively using Gnome-Classic)?

    Read the article

  • How to install older ruby version on ubuntu Precise Pangolin?

    - by Codestudent
    I got a present: older Rails tutorials that needs old ruby version. I try to install ruby-1.8 with the packet manager. I still got problems with the tutorial example code. Next I try rvm to install the old ruby version. Unfortunately I got an error. I do not know what to do. I search the internet. Many people got no problems with rvm. rvm use *ERROR: Branch origin/ruby_1_8_4 not found.* and *ERROR: Error running 'GEM_PATH="/usr/share/ruby-rvm/gems/ruby-1.8.4- tv1_8_4:/usr/share/ruby-rvm/gems/ruby-1.8.4-tv1_8_4@global:/usr/share/ruby- rvm/gems/ruby-1.8.4-tv1_8_4:/usr/share/ruby-rvm/gems/ruby-1.8.4-tv1_8_4@global" GEM_HOME="/usr/share/ruby-rvm/gems/ruby-1.8.4-tv1_8_4" "/usr/share/ruby- rvm/rubies/ruby-1.8.4-tv1_8_4/bin/ruby" "/usr/share/ruby-rvm/src/rubygems- 1.3.7/setup.rb"', please read /usr/share/ruby-rvm/log/ruby-1.8.4- tv1_8_4/rubygems.install.log* Please give me a hint.

    Read the article

  • .htaccess non-www to www rule seems to work but the URL isn't changing in the address bar

    - by SnakeByte
    On a joomla site, apache, shared hosting, I'm using next .htaccess rule: RewriteCond %{HTTP_HOST} !^www\. RewriteRule ^(.*)$ http://www.%{HTTP_HOST}/$1 [R=301,L] The problem is that the browser's address bar text does not change from example.com to www.example.com. It seems the redirect actually works because all the links on the pages are changed to www. And after clicking on any link from there it always continues to have www added. The problem is the first page (no matter which one) that is loaded using browser's address bar - like example.com or example.com/random-page. Solved. The redirect actually works.

    Read the article

  • Great Silverlight User Group meeting last night - Thanks Joel!

    - by Dave Campbell
    Last night's Silverlight User Group meeting in Phoenix went really well. We had about 15 in attendance, and everyone seemed engaged with Joel Neubeck's great Windows Phone 7 presentation. When it was over, we gave away a couple copies of Windows 7 Ultimate, one copy of the Expression Suite, an Arc Mouse, a web cam, a bunch of books, other assorted software and some TShirts.  All-in-all I think it was a good time had by all. Thanks to Joel Neubeck for the time and presentation and to Joe's mom for the babysitting! See you all next month.

    Read the article

  • Can't replace MDM Display Manager with LightDM!

    - by Naveen
    Well, I installed MDM, and found it's buggy with my VGA hardware due to the following screen after rebooting: This screen repeats, even if I choose Yes or No As I have access to the console (by pressing ALT+F2) I tried, sudo dpkg-reconfigure lightdm which gave me the following screen, Even if I choose LightDM nothing happens at the next reboot. The first screen comes back! dpkg -l | grep -i mdm command results me following, ii mdm___________1.0.4-0~webupd8~precise_____Gnome Display Mnager ii mint-mdm-themes__1.0.5-0~webupd8~precise1_____Linux Mint MDM Themes (underscores are spaces) Please help... I need LightDM login screen back! Thanks!

    Read the article

  • Calculated Columns in Entity Framework Code First Migrations

    - by David Paquette
    I had a couple people ask me about calculated properties / columns in Entity Framework this week.  The question was, is there a way to specify a property in my C# class that is the result of some calculation involving 2 properties of the same class.  For example, in my database, I store a FirstName and a LastName column and I would like a FullName property that is computed from the FirstName and LastName columns.  My initial answer was: 1: public string FullName 2: { 3: get { return string.Format("{0} {1}", FirstName, LastName); } 4: } Of course, this works fine, but this does not give us the ability to write queries using the FullName property.  For example, this query: 1: var users = context.Users.Where(u => u.FullName.Contains("anan")); Would result in the following NotSupportedException: The specified type member 'FullName' is not supported in LINQ to Entities. Only initializers, entity members, and entity navigation properties are supported. It turns out there is a way to support this type of behavior with Entity Framework Code First Migrations by making use of Computed Columns in SQL Server.  While there is no native support for computed columns in Code First Migrations, we can manually configure our migration to use computed columns. Let’s start by defining our C# classes and DbContext: 1: public class UserProfile 2: { 3: public int Id { get; set; } 4: 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: 8: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 9: public string FullName { get; private set; } 10: } 11: 12: public class UserContext : DbContext 13: { 14: public DbSet<UserProfile> Users { get; set; } 15: } The DatabaseGenerated attribute is needed on our FullName property.  This is a hint to let Entity Framework Code First know that the database will be computing this property for us. Next, we need to run 2 commands in the Package Manager Console.  First, run Enable-Migrations to enable Code First Migrations for the UserContext.  Next, run Add-Migration Initial to create an initial migration.  This will create a migration that creates the UserProfile table with 3 columns: FirstName, LastName, and FullName.  This is where we need to make a small change.  Instead of allowing Code First Migrations to create the FullName property, we will manually add that column as a computed column. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: CreateTable( 6: "dbo.UserProfiles", 7: c => new 8: { 9: Id = c.Int(nullable: false, identity: true), 10: FirstName = c.String(), 11: LastName = c.String(), 12: //FullName = c.String(), 13: }) 14: .PrimaryKey(t => t.Id); 15: Sql("ALTER TABLE dbo.UserProfiles ADD FullName AS FirstName + ' ' + LastName"); 16: } 17: 18: 19: public override void Down() 20: { 21: DropTable("dbo.UserProfiles"); 22: } 23: } Finally, run the Update-Database command.  Now we can query for Users using the FullName property and that query will be executed on the database server.  However, we encounter another potential problem. Since the FullName property is calculated by the database, it will get out of sync on the object side as soon as we make a change to the FirstName or LastName property.  Luckily, we can have the best of both worlds here by also adding the calculation back to the getter on the FullName property: 1: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 2: public string FullName 3: { 4: get { return FirstName + " " + LastName; } 5: private set 6: { 7: //Just need this here to trick EF 8: } 9: } Now we can both query for Users using the FullName property and we also won’t need to worry about the FullName property being out of sync with the FirstName and LastName properties.  When we run this code: 1: using(UserContext context = new UserContext()) 2: { 3: UserProfile userProfile = new UserProfile {FirstName = "Chanandler", LastName = "Bong"}; 4: 5: Console.WriteLine("Before saving: " + userProfile.FullName); 6: 7: context.Users.Add(userProfile); 8: context.SaveChanges(); 9:  10: Console.WriteLine("After saving: " + userProfile.FullName); 11:  12: UserProfile chanandler = context.Users.First(u => u.FullName == "Chanandler Bong"); 13: Console.WriteLine("After reading: " + chanandler.FullName); 14:  15: chanandler.FirstName = "Chandler"; 16: chanandler.LastName = "Bing"; 17:  18: Console.WriteLine("After changing: " + chanandler.FullName); 19:  20: } We get this output: It took a bit of work, but finally Chandler’s TV Guide can be delivered to the right person. The obvious downside to this implementation is that the FullName calculation is duplicated in the database and in the UserProfile class. This sample was written using Visual Studio 2012 and Entity Framework 5. Download the source code here.

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • Shaping the Future of Power

    - by caroline.yu
    In an energy marketplace that continues to evolve, gain insight into how utility executives increasingly confront the challenges of preparing their workers, regulators and customers for a period of volatility and promise. This free on-demand Web cast, sponsored and underwritten by Oracle Utilities, will provide you with an executive-level view of what it means and takes to be a utility leader. By viewing this Web cast, you will hear: NRG's CEO David Crane weighing in on next-gen nuclear, generation portfolio diversity, and what it's like to live through (and thrive in) a hostile takeover attempt EPRI's Clark Gellings, the father of demand side management, outlining the coming trends marrying technology with customer energy consumption patterns CEO Ralph Izzo discussing PSEG's low-carbon emissions strategy, commitment to solar power development, and pursuit of reliability through infrastructure investment. To view this Web cast, please follow this link.

    Read the article

  • Fun With the Chrome JavaScript Console and the Pluralsight Website

    - by Steve Michelotti
    Originally posted on: http://geekswithblogs.net/michelotti/archive/2013/07/24/fun-with-the-chrome-javascript-console-and-the-pluralsight-website.aspxI’m currently working on my third course for Pluralsight. Everyone already knows that Scott Allen is a “dominating force” for Pluralsight but I was curious how many courses other authors have published as well. The Pluralsight Authors page - http://pluralsight.com/training/Authors – shows all 146 authors and you can click on any author’s page to see how many (and which) courses they have authored. The problem is: I don’t want to have to click into 146 pages to get a count for each author. With this in mind, I figured I could write a little JavaScript using the Chrome JavaScript console to do some “detective work.” My first step was to figure out how the HTML was structured on this page so I could do some screen-scraping. Right-click the first author - “Inspect Element”. I can see there is a primary <div> with a class of “main” which contains all the authors. Each author is in an <h3> with an <a> tag containing their name and link to their page:     This web page already has jQuery loaded so I can use $ directly from the console. This allows me to just use jQuery to inspect items on the current page. Notice this is a multi-line command. In order to use multiple lines in the console you have to press SHIFT-ENTER to go to the next line:     Now I can see I’m extracting data just fine. At this point I want to follow each URL. Then I want to screen-scrape this next page to see how many courses each author has done. Let’s take a look at the author detail page:       I can see we have a table (with a css class of “course”) that contains rows for each course authored. This means I can get the number of courses pretty easily like this:     Now I can put this all together. Back on the authors page, I want to follow each URL, extract the returned HTML, and grab the count. In the code below, I simply use the jQuery $.get() method to get the author detail page and the “data” variable that is in the callback contains the HTML. A nice feature of jQuery is that I can simply put this HTML string inside of $() and I can use jQuery selectors directly on it in conjunction with the find() method:     Now I’m getting somewhere. I have every Pluralsight author and how many courses each one has authored. But that’s not quite what I’m after – what I want to see are the authors that have the MOST courses in the library. What I’d like to do is to put all of the data in an array and then sort that array descending by number of courses. I can add an item to the array after each author detail page is returned but the catch here is that I can’t perform the sort operation until ALL of the author detail pages have executed. The jQuery $.get() method is naturally an async method so I essentially have 146 async calls and I don’t want to perform my sort action until ALL have completed (side note: don’t run this script too many times or the Pluralsight servers might think your an evil hacker attempting a DoS attack and deny you). My C# brain wants to use a WaitHandle WaitAll() method here but this is JavaScript. I was able to do this by using the jQuery Deferred() object. I create a new deferred object for each request and push it onto a deferred array. After each request is complete, I signal completion by calling the resolve() method. Finally, I use a $.when.apply() method to execute my descending sort operation once all requests are complete. Here is my complete console command: 1: var authorList = [], 2: defList = []; 3: $(".main h3 a").each(function() { 4: var def = $.Deferred(); 5: defList.push(def); 6: var authorName = $(this).text(); 7: var authorUrl = $(this).attr('href'); 8: $.get(authorUrl, function(data) { 9: var courseCount = $(data).find("table.course tbody tr").length; 10: authorList.push({ name: authorName, numberOfCourses: courseCount }); 11: def.resolve(); 12: }); 13: }); 14: $.when.apply($, defList).then(function() { 15: console.log("*Everything* is complete"); 16: var sortedList = authorList.sort(function(obj1, obj2) { 17: return obj2.numberOfCourses - obj1.numberOfCourses; 18: }); 19: for (var i = 0; i < sortedList.length; i++) { 20: console.log(authorList[i]); 21: } 22: });   And here are the results:     WOW! John Sonmez has 44 courses!! And Matt Milner has 29! I guess Scott Allen isn’t the only “dominating force”. I would have assumed Scott Allen was #1 but he comes in as #3 in total course count (of course Scott has 11 courses in the Top 50, and 14 in the Top 100 which is incredible!). Given that I’m in the middle of producing only my third course, I better get to work!

    Read the article

  • What You Said: How You Keep Your Email SPAM Free and Tidy

    - by Jason Fitzpatrick
    Earlier this week we asked you to share your favorite tips and tricks for keeping your inbox tidy. Now we’re back to share your–rather aggressive–SPAM dodging tricks. HTG readers are serious about beating back SPAM. While some readers such as TechGeek01 took a fairly laid back approach to junk mail: I usually just read emails, and delete them when my inbox gets kinda full. As for spam, I mark it as such, and the automated spam filter usually catches it the next time. It’s a fairly simple method, I know, but it’s efficient, and takes almost no effort, other than a monthly cleaning. For other readers it was outright war. ArchersCall uses a system of layers and whitelists: I have a triple system and rarely see spam. How to Banish Duplicate Photos with VisiPic How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It?

    Read the article

  • Wear Glasses To Get Better Job

    - by Gopinath
    Here is a simple tip to impress your next interviewer and land into a better job – wear glasses. A new study finds that spectacle-wearers look more professional and more professional. Never mind a crisp shirt or a firm handshake. If you want to impress a potential employer, put on a pair of spectacles. Job hunters are more likely to be hired if they wear glasses to their interview cc image credit:flickr/foshydog This article titled,Wear Glasses To Get Better Job, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

< Previous Page | 357 358 359 360 361 362 363 364 365 366 367 368  | Next Page >