Search Results

Search found 109760 results on 4391 pages for 'ado net entity data model'.

Page 2/4391 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How do I create a dynamic data transfer object dynamically from ADO.net model

    - by Richard
    I have a pretty simple database with 5 tables, PK's and relationships setup, etc. I also have an ASP.net MVC3 project I'm using to create simple web services to feed JSON/XML to a mobile app using post/get. To access my data I'm using an ADO.net entity model class to handle generation of the entities, etc. Due to issues with serialization/circular references created by the auto-generated relations from ADO.net entity model, I've been forced to create "Data transfer objects" to strip out the relations and data that doesn't need to be transferred. Question 1: is there an easier way to create DTOs using the entity framework itself? IE, specify only the entity properties I want to convert to Jsonresults? I don't wish to use any 3rd party frameworks if I can help it. Question 2: A side question for Entity Framework, say I create an ADO.net entity model in one project within a solution. Because that model relies on the connection to the database specified in project A, can project B somehow use that model with a similar connection? Both projects are in the same solution. Thanks!

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • April 14th Links: ASP.NET, ASP.NET MVC, ASP.NET Web API and Visual Studio

    - by ScottGu
    Here is the latest in my link-listing blog series: ASP.NET Easily overlooked features in VS 11 Express for Web: Good post by Scott Hanselman that highlights a bunch of easily overlooked improvements that are coming to VS 11 (and specifically the free express editions) for web development: unit testing, browser chooser/launcher, IIS Express, CSS Color Picker, Image Preview in Solution Explorer and more. Get Started with ASP.NET 4.5 Web Forms: Good 5-part tutorial that walks-through building an application using ASP.NET Web Forms and highlights some of the nice improvements coming with ASP.NET 4.5. What is New in Razor V2 and What Else is New in Razor V2: Great posts by Andrew Nurse, a dev on the ASP.NET team, about some of the new improvements coming with ASP.NET Razor v2. ASP.NET MVC 4 AllowAnonymous Attribute: Nice post from David Hayden that talks about the new [AllowAnonymous] filter introduced with ASP.NET MVC 4. Introduction to the ASP.NET Web API: Great tutorial by Stephen Walher that covers how to use the new ASP.NET Web API support built-into ASP.NET 4.5 and ASP.NET MVC 4. Comprehensive List of ASP.NET Web API Tutorials and Articles: Tugberk Ugurlu links to a huge collection of articles, tutorials, and samples about the new ASP.NET Web API capability. Async Mashups using ASP.NET Web API: Nice post by Henrik on how you can use the new async language support coming with .NET 4.5 to easily and efficiently make asynchronous network requests that do not block threads within ASP.NET. ASP.NET and Front-End Web Development Visual Studio 11 and Front End Web Development - JavaScript/HTML5/CSS3: Nice post by Scott Hanselman that highlights some of the great improvements coming with VS 11 (including the free express edition) for front-end web development. HTML5 Drag/Drop and Async Multi-file Upload with ASP.NET Web API: Great post by Filip W. that demonstrates how to implement an async file drag/drop uploader using HTML5 and ASP.NET Web API. Device Emulator Guide for Mobile Development with ASP.NET: Good post from Rachel Appel that covers how to use various device emulators with ASP.NET and VS to develop cross platform mobile sites. Fixing these jQuery: A Guide to Debugging: Great presentation by Adam Sontag on debugging with JavaScript and jQuery.  Some really good tips, tricks and gotchas that can save a lot of time. ASP.NET and Open Source Getting Started with ASP.NET Web Stack Source on CodePlex: Fantastic post by Henrik (an architect on the ASP.NET team) that provides step by step instructions on how to work with the ASP.NET source code we recently open sourced. Contributing to ASP.NET Web Stack Source on CodePlex: Follow-on to the post above (also by Henrik) that walks-through how you can submit a code contribution to the ASP.NET MVC, Web API and Razor projects. Overview of the WebApiContrib project: Nice post by Pedro Reys on the new open source WebApiContrib project that has been started to deliver cool extensions and libraries for use with ASP.NET Web API. Entity Framework Entity Framework 5 Performance Improvements and Performance Considerations for EF5:  Good articles that describes some of the big performance wins coming with EF5 (which will ship with both .NET 4.5 and ASP.NET MVC 4). Automatic compilation of LINQ queries will yield some significant performance wins (up to 600% faster). ASP.NET MVC 4 and EF Database Migrations: Good post by David Hayden that covers the new database migrations support within EF 4.3 which allows you to easily update your database schema during development - without losing any of the data within it. Visual Studio What's New in Visual Studio 11 Unit Testing: Nice post by Peter Provost (from the VS team) that talks about some of the great improvements coming to VS11 for unit testing - including built-in VS tooling support for a broad set of unit test frameworks (including NUnit, XUnit, Jasmine, QUnit and more) Hope this helps, Scott

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Using TypeScript in ASP.NET MVC Projects

    - by shiju
    In the previous blog post Microsoft TypeScript : A Typed Superset of JavaScript, I have given a brief introduction on TypeScript. In this post, I will demonstrate how to use TypeScript with ASP.NET MVC projects and how we can compile TypeScript within the ASP.NET MVC projects. Using TypeScript with ASP.NET MVC 3 Projects The Visual Studio plug-in for TypeScript provides an ASP.NET MVC 3 project template for TypeScript that lets you to compile TypeScript from the Visual Studio. The following screen shot shows the TypeScript template for ASP.NET MVC 3 project The “TypeScript Internet Application” template is just a ASP.NET MVC 3 internet application project template which will allows to compile TypeScript programs to JavaScript when you are building your ASP.NET MVC projects. This project template will have the following section in the .csproject file <None Include="Scripts\jquery.d.ts" /> <TypeScriptCompile Include="Scripts\site.ts" /> <Content Include="Scripts\site.js"> <DependentUpon>site.ts</DependentUpon> </Content> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <Target Name="BeforeBuild"> <Exec Command="&amp;quot;$(PROGRAMFILES)\ Microsoft SDKs\TypeScript\0.8.0.0\tsc&amp;quot; @(TypeScriptCompile ->'&quot;%(fullpath)&quot;', ' ')" /> </Target> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The “BeforeBuild” target will allows you to compile TypeScript programs when you are building your ASP.NET MVC projects. The TypeScript project template will provide a typing reference file for the jQuery library named “jquery.d.ts”. The following default app.ts file referenced to jquery.d.ts 1: ///<reference path='jquery.d.ts' /> 2:   3: $(document).ready(function () { 4:   5: $(".btn-slide").click(function () { 6: $("#main").slideToggle("slow"); 7: $(this).toggleClass("active"); 8: }); 9:   10: }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Using TypeScript with ASP.NET MVC 4 Projects The current preview version of TypeScript is not providing a project template for ASP.NET MVC 4 projects. But you can use TypeScript with ASP.NET MVC 4 projects by editing the project’s .csproject file. You can take the necessary settings from ASP.NET MVC 3 project file. I have just added the following section in the end of the .csproj file of a ASP.NET MVC 4 project, which will allows to compile all TypeScript when building ASP.NET MVC 4 project. <ItemGroup> <TypeScriptCompile Include="$(ProjectDir)\**\*.ts" /> </ItemGroup> <Target Name="BeforeBuild"> <Exec Command="&amp;quot;$(PROGRAMFILES)\ Microsoft SDKs\TypeScript\0.8.0.0\tsc&amp;quot; @(TypeScriptCompile ->'&quot;%(fullpath)&quot;', ' ')" /> </Target> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }

    Read the article

  • May 20th Links: ASP.NET MVC, ASP.NET, .NET 4, VS 2010, Silverlight

    - by ScottGu
    Here is the latest in my link-listing series.  Also check out my VS 2010 and .NET 4 series and ASP.NET MVC 2 series for other on-going blog series I’m working on. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET MVC How to Localize an ASP.NET MVC Application: Michael Ceranski has a good blog post that describes how to localize ASP.NET MVC 2 applications. ASP.NET MVC with jTemplates Part 1 and Part 2: Steve Gentile has a nice two-part set of blog posts that demonstrate how to use the jTemplate and DataTable jQuery libraries to implement client-side data binding with ASP.NET MVC. CascadingDropDown jQuery Plugin for ASP.NET MVC: Raj Kaimal has a nice blog post that demonstrates how to implement a dynamically constructed cascading dropdownlist on the client using jQuery and ASP.NET MVC. How to Configure VS 2010 Code Coverage for ASP.NET MVC Unit Tests: Visual Studio enables you to calculate the “code coverage” of your unit tests.  This measures the percentage of code within your application that is exercised by your tests – and can give you a sense of how much test coverage you have.  Gunnar Peipman demonstrates how to configure this for ASP.NET MVC projects. Shrinkr URL Shortening Service Sample: A nice open source application and code sample built by Kazi Manzur that demonstrates how to implement a URL Shortening Services (like bit.ly) using ASP.NET MVC 2 and EF4.  More details here. Creating RSS Feeds in ASP.NET MVC: Damien Guard has a nice post that describes a cool new “FeedResult” class he created that makes it easy to publish and expose RSS feeds from within ASP.NET MVC sites. NoSQL with MongoDB, NoRM and ASP.NET MVC Part 1 and Part 2: Nice two-part blog series by Shiju Varghese on how to use MongoDB (a document database) with ASP.NET MVC.  If you are interested in document databases also make sure to check out the Raven DB project from Ayende. Using the FCKEditor with ASP.NET MVC: Quick blog post that describes how to use FCKEditor – an open source HTML Text Editor – with ASP.NET MVC. ASP.NET Replace Html.Encode Calls with the New HTML Encoding Syntax: Phil Haack has a good blog post that describes a useful way to quickly update your ASP.NET pages and ASP.NET MVC views to use the new <%: %> encoding syntax in ASP.NET 4.  I blogged about the new <%: %> syntax – it provides an easy and concise way to HTML encode content. Integrating Twitter into an ASP.NET Website using OAuth: Scott Mitchell has a nice article that describes how to take advantage of Twiter within an ASP.NET Website using the OAuth protocol – which is a simple, secure protocol for granting API access. Creating an ASP.NET report using VS 2010 Part 1, Part 2, and Part 3: Raj Kaimal has a nice three part set of blog posts that detail how to use SQL Server Reporting Services, ASP.NET 4 and VS 2010 to create a dynamic reporting solution. Three Hidden Extensibility Gems in ASP.NET 4: Phil Haack blogs about three obscure but useful extensibility points enabled with ASP.NET 4. .NET 4 Entity Framework 4 Video Series: Julie Lerman has a nice, free, 7-part video series on MSDN that walks through how to use the new EF4 capabilities with VS 2010 and .NET 4.  I’ll be covering EF4 in a blog series that I’m going to start shortly as well. Getting Lazy with System.Lazy: System.Lazy and System.Lazy<T> are new features in .NET 4 that provide a way to create objects that may need to perform time consuming operations and defer the execution of the operation until it is needed.  Derik Whittaker has a nice write-up that describes how to use it. LINQ to Twitter: Nifty open source library on Codeplex that enables you to use LINQ syntax to query Twitter. Visual Studio 2010 Using Intellitrace in VS 2010: Chris Koenig has a nice 10 minute video that demonstrates how to use the new Intellitrace features of VS 2010 to enable DVR playback of your debug sessions. Make the VS 2010 IDE Colors look like VS 2008: Scott Hanselman has a nice blog post that covers the Visual Studio Color Theme Editor extension – which allows you to customize the VS 2010 IDE however you want. How to understand your code using Dependency Graphs, Sequence Diagrams, and the Architecture Explorer: Jennifer Marsman has a nice blog post describes how to take advantage of some of the new architecture features within VS 2010 to quickly analyze applications and legacy code-bases. How to maintain control of your code using Layer Diagrams: Another great blog post by Jennifer Marsman that demonstrates how to setup a “layer diagram” within VS 2010 to enforce clean layering within your applications.  This enables you to enforce a compiler error if someone inadvertently violates a layer design rule. Collapse Selection in Solution Explorer Extension: Useful VS 2010 extension that enables you to quickly collapse “child nodes” within the Visual Studio Solution Explorer.  If you have deeply nested project structures this extension is useful. Silverlight and Windows Phone 7 Building a Simple Windows Phone 7 Application: A nice tutorial blog post that demonstrates how to take advantage of Expression Blend to create an animated Windows Phone 7 application. If you haven’t checked out my Windows Phone 7 Twitter Tutorial I also recommend reading that. Hope this helps, Scott P.S. If you haven’t already, check out this month’s "Find a Hoster” page on the www.asp.net website to learn about great (and very inexpensive) ASP.NET hosting offers.

    Read the article

  • Entity framework entity class mapping with plain .net class

    - by Elan
    I have following in entity framework Table - Country Fields List item Country_ID Dialing_Code ISO_Alpha2 ISO_Alpha3 ISO_Full I would like to map only selected fields from this entity model to my domain class. My domain model class is public class DomainCountry { public int Country_ID { get; set; } public string Dialing_Code { get; set; } public string ISO_3166_1_Alpha_2 { get; set; } } The following will work however insert or update is not possible. In order to get insert or update we need to use ObjectSet< but it will not support in my case. IQueryable<DomainCountry> countries = context.Countries.Select( c => new DomainCountry { Country_ID = c.Country_Id, Dialing_Code = c.Dialing_Code, ISO_3166_1_Alpha_2 = c.ISO_3166_1_Alpha_2 }); It will be really fantastic could someone provide a nice solution for this. Ideally it will be kind of proxy class which will support all the futures however highly customizable i.e. only the columns we want to expose to the outer world

    Read the article

  • Generating EF Code First model classes from an existing database

    - by Jon Galloway
    Entity Framework Code First is a lightweight way to "turn on" data access for a simple CLR class. As the name implies, the intended use is that you're writing the code first and thinking about the database later. However, I really like the Entity Framework Code First works, and I want to use it in existing projects and projects with pre-existing databases. For example, MVC Music Store comes with a SQL Express database that's pre-loaded with a catalog of music (including genres, artists, and songs), and while it may eventually make sense to load that seed data from a different source, for the MVC 3 release we wanted to keep using the existing database. While I'm not getting the full benefit of Code First - writing code which drives the database schema - I can still benefit from the simplicity of the lightweight code approach. Scott Guthrie blogged about how to use entity framework with an existing database, looking at how you can override the Entity Framework Code First conventions so that it can work with a database which was created following other conventions. That gives you the information you need to create the model classes manually. However, it turns out that with Entity Framework 4 CTP 5, there's a way to generate the model classes from the database schema. Once the grunt work is done, of course, you can go in and modify the model classes as you'd like, but you can save the time and frustration of figuring out things like mapping SQL database types to .NET types. Note that this template requires Entity Framework 4 CTP 5 or later. You can install EF 4 CTP 5 here. Step One: Generate an EF Model from your existing database The code generation system in Entity Framework works from a model. You can add a model to your existing project and delete it when you're done, but I think it's simpler to just spin up a separate project to generate the model classes. When you're done, you can delete the project without affecting your application, or you may choose to keep it around in case you have other database schema updates which require model changes. I chose to add the Model classes to the Models folder of a new MVC 3 application. Right-click the folder and select "Add / New Item..."   Next, select ADO.NET Entity Data Model from the Data Templates list, and name it whatever you want (the name is unimportant).   Next, select "Generate from database." This is important - it's what kicks off the next few steps, which read your database's schema.   Now it's time to point the Entity Data Model Wizard at your existing database. I'll assume you know how to find your database - if not, I covered that a bit in the MVC Music Store tutorial section on Models and Data. Select your database, uncheck the "Save entity connection settings in Web.config" (since we won't be using them within the application), and click Next.   Now you can select the database objects you'd like modeled. I just selected all tables and clicked Finish.   And there's your model. If you want, you can make additional changes here before going on to generate the code.   Step Two: Add the DbContext Generator Like most code generation systems in Visual Studio lately, Entity Framework uses T4 templates which allow for some control over how the code is generated. K Scott Allen wrote a detailed article on T4 Templates and the Entity Framework on MSDN recently, if you'd like to know more. Fortunately for us, there's already a template that does just what we need without any customization. Right-click a blank space in the Entity Framework model surface and select "Add Code Generation Item..." Select the Code groupt in the Installed Templates section and pick the ADO.NET DbContext Generator. If you don't see this listed, make sure you've got EF 4 CTP 5 installed and that you're looking at the Code templates group. Note that the DbContext Generator template is similar to the EF POCO template which came out last year, but with "fix up" code (unnecessary in EF Code First) removed.   As soon as you do this, you'll two terrifying Security Warnings - unless you click the "Do not show this message again" checkbox the first time. It will also be displayed (twice) every time you rebuild the project, so I checked the box and no immediate harm befell my computer (fingers crossed!).   Here's the payoff: two templates (filenames ending with .tt) have been added to the project, and they've generated the code I needed.   The "MusicStoreEntities.Context.tt" template built a DbContext class which holds the entity collections, and the "MusicStoreEntities.tt" template build a separate class for each table I selected earlier. We'll customize them in the next step. I recommend copying all the generated .cs files into your application at this point, since accidentally rebuilding the generation project will overwrite your changes if you leave them there. Step Three: Modify and use your POCO entity classes Note: I made a bunch of tweaks to my POCO classes after they were generated. You don't have to do any of this, but I think it's important that you can - they're your classes, and EF Code First respects that. Modify them as you need for your application, or don't. The Context class derives from DbContext, which is what turns on the EF Code First features. It holds a DbSet for each entity. Think of DbSet as a simple List, but with Entity Framework features turned on.   //------------------------------------------------------------------------------ // <auto-generated> // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Data.Entity; public partial class Entities : DbContext { public Entities() : base("name=Entities") { } public DbSet<Album> Albums { get; set; } public DbSet<Artist> Artists { get; set; } public DbSet<Cart> Carts { get; set; } public DbSet<Genre> Genres { get; set; } public DbSet<OrderDetail> OrderDetails { get; set; } public DbSet<Order> Orders { get; set; } } } It's a pretty lightweight class as generated, so I just took out the comments, set the namespace, removed the constructor, and formatted it a bit. Done. If I wanted, though, I could have added or removed DbSets, overridden conventions, etc. using System.Data.Entity; namespace MvcMusicStore.Models { public class MusicStoreEntities : DbContext { public DbSet Albums { get; set; } public DbSet Genres { get; set; } public DbSet Artists { get; set; } public DbSet Carts { get; set; } public DbSet Orders { get; set; } public DbSet OrderDetails { get; set; } } } Next, it's time to look at the individual classes. Some of mine were pretty simple - for the Cart class, I just need to remove the header and clean up the namespace. //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Cart { // Primitive properties public int RecordId { get; set; } public string CartId { get; set; } public int AlbumId { get; set; } public int Count { get; set; } public System.DateTime DateCreated { get; set; } // Navigation properties public virtual Album Album { get; set; } } } I did a bit more customization on the Album class. Here's what was generated: //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Album { public Album() { this.Carts = new HashSet(); this.OrderDetails = new HashSet(); } // Primitive properties public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } // Navigation properties public virtual Artist Artist { get; set; } public virtual Genre Genre { get; set; } public virtual ICollection Carts { get; set; } public virtual ICollection OrderDetails { get; set; } } } I removed the header, changed the namespace, and removed some of the navigation properties. One nice thing about EF Code First is that you don't have to have a property for each database column or foreign key. In the Music Store sample, for instance, we build the app up using code first and start with just a few columns, adding in fields and navigation properties as the application needs them. EF Code First handles the columsn we've told it about and doesn't complain about the others. Here's the basic class: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { public class Album { public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List OrderDetails { get; set; } } } It's my class, not Entity Framework's, so I'm free to do what I want with it. I added a bunch of MVC 3 annotations for scaffolding and validation support, as shown below: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { [Bind(Exclude = "AlbumId")] public class Album { [ScaffoldColumn(false)] public int AlbumId { get; set; } [DisplayName("Genre")] public int GenreId { get; set; } [DisplayName("Artist")] public int ArtistId { get; set; } [Required(ErrorMessage = "An Album Title is required")] [StringLength(160)] public string Title { get; set; } [Required(ErrorMessage = "Price is required")] [Range(0.01, 100.00, ErrorMessage = "Price must be between 0.01 and 100.00")] public decimal Price { get; set; } [DisplayName("Album Art URL")] [StringLength(1024)] public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List<OrderDetail> OrderDetails { get; set; } } } The end result was that I had working EF Code First model code for the finished application. You can follow along through the tutorial to see how I built up to the finished model classes, starting with simple 2-3 property classes and building up to the full working schema. Thanks to Diego Vega (on the Entity Framework team) for pointing me to the DbContext template.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • Box2D Joints in entity components system

    - by Johnmph
    I search a way to have Box2D joints in an entity component system, here is what i found : 1) Having the joints in Box2D/Body component as parameters, we have a joint array with an ID by joint and having in the other body component the same joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Joint ID = Joint1 Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Same joint ID than in Entity1 There are 3 problems with this solution : The first problem is the implementation of this solution, we must manage the joints ID to create joints and to know between which bodies they are connected. The second problem is the parameters of joint, where are they got ? on the Entity1 or Entity2 ? If they are the same parameters for the joint, there is no problem but if they are differents ? The third problem is that we can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component with the same joint ID, in this case, how we know the 2 bodies to joint and what to do with others bodies ? 2) Same solution than the first solution but by having entities ID instead of Joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Entity2 => (joint parameters), others joints... } } Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Entity1 => (joint parameters), others joints... } } With this solution, we fix the first problem of the first solution but we have always the two others problems. 3) Having a Box2D/Joint component which is inserted in the entities which contains the bodies to joint (we share the same joint component between entities with bodies to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (Joint parameters) } // Shared, same as in Entity2 Entity2 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity1 There are 2 problems with this solution : The first problem is the same problem than in solution 1 and 2 : We can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component and the shared joint component, in this case, how we know the 2 bodies to joint and what to do with others bodies ? The second problem is that we can have only one joint by body because entity components system allows to have only one component of same type in an entity. So we can't put two Joint components in the same entity. 4) Having a Box2D/Joint component which is inserted in the entity which contains the first body component to joint and which has an entity ID parameter (this entity contains the second body to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Entity2 => (Joint parameters) } // Entity2 is the entity ID which contains the other body to joint, the first body being in this entity Entity2 - Box2D/Body component { Body => (body parameters) } There are exactly the same problems that in the third solution, the only difference is that we can have two differents joints by entity instead of one (by putting one joint component in an entity and another joint component in another entity, each joint referencing to the other entity). 5) Having a Box2D/Joint component which take in parameter the two entities ID which contains the bodies to joint, this component can be inserted in any entity, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } Entity2 - Box2D/Body component { Body => (body parameters) } Entity3 - Box2D/Joint component { Joint => (Body1 => Entity1, Body2 => Entity2, others parameters of joint) } // Entity1 is the ID of the entity which have the first body to joint and Entity2 is the ID of the entity which have the second body to joint (This component can be in any entity, that doesn't matter) With this solution, we fix the problem of the body limitation by joint, we can only have two bodies per joint, which is correct. And we are not limited by number of joints per body, because we can create an another Box2D/Joint component, referencing to Entity1 and Entity2 and put this component in a new entity. The problem of this solution is : What happens if we change the Body1 or Body2 parameter of Joint component at runtime ? We need to add code to sync the Body1/Body2 parameters changes with the real joint object. 6) Same as solution 3 but in a better way : Having a Box2D/Joint component Box2D/Joint which is inserted in the entities which contains the bodies to joint, we share the same joint component between these entities BUT the difference is that we create a new entity to link the body component with the joint component, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity3 Entity2 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity4 Entity3 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity1 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity4 Entity4 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity2 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity3 With this solution, we fix the second problem of the solution 3, because we can create an Entity5 which will have the shared body component of Entity1 and an another joint component so we are no longer limited in the joint number per body. But the first problem of solution 3 remains, because we can't limit the number of entities which have the shared joint component. To resolve this problem, we can add a way to limit the number of share of a component, so for the Joint component, we limit the number of share to 2, because we can only joint 2 bodies per joint. This solution would be perfect because there is no need to add code to sync changes like in the solution 5 because we are notified by the entity components system when components / entities are added to/removed from the system. But there is a conception problem : How to know easily and quickly between which bodies the joint operates ? Because, there is no way to find easily an entity with a component instance. My question is : Which solution is the best ? Is there any other better solutions ? Sorry for the long text and my bad english.

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • How to include a child object's child object in Entity Framework 5

    - by Brendan Vogt
    I am using Entity Framework 5 code first and ASP.NET MVC 3. I am struggling to get a child object's child object to populate. Below are my classes.. Application class; public class Application { // Partial list of properties public virtual ICollection<Child> Children { get; set; } } Child class: public class Child { // Partial list of properties public int ChildRelationshipTypeId { get; set; } public virtual ChildRelationshipType ChildRelationshipType { get; set; } } ChildRelationshipType class: public class ChildRelationshipType { public int Id { get; set; } public string Name { get; set; } } Part of GetAll method in the repository to return all the applications: return DatabaseContext.Applications .Include("Children"); The Child class contains a reference to the ChildRelationshipType class. To work with an application's children I would have something like this: foreach (Child child in application.Children) { string childName = child.ChildRelationshipType.Name; } I get an error here that the object context is already closed. How do I specify that each child object must include the ChildRelationshipType object like what I did above?

    Read the article

  • ASP.NET MVC3 checkbox dropdownlist create [migrated]

    - by user95381
    i'm new in asp.net MVC and I/m use view model to poppulate the dropdown list and group of checkboxes. I use SQL Server 2012, where have many to many relationships between Students - Books; Student - Cities. I need collect StudentName, one city and many books for one student. I have next questions: 1. How can I get the values from database to my StudentBookCityViewModel? 2. How can I save the values to my database in [HttpPost] Create method? Here is the code: MODEL public class Student { public int StudentId { get; set; } public string StudentName { get; set; } public ICollection<Book> Books { get; set; } public ICollection<City> Cities { get; set; } } public class Book { public int BookId { get; set; } public string BookName { get; set; } public bool IsSelected { get; set; } public ICollection<Student> Students { get; set; } } public class City { public int CityId { get; set; } public string CityName { get; set; } public bool IsSelected { get; set; } public ICollection<Student> Students { get; set; } } VIEW MODEL public class StudentBookCityViewModel { public string StudentName { get; set; } public IList<Book> Books { get; set; } public StudentBookCityViewModel() { Books = new[] { new Book {BookName = "Title1", IsSelected = false}, new Book {BookName = "Title2", IsSelected = false}, new Book {BookName = "Title3", IsSelected = false} }.ToList(); } public string City { get; set; } public IEnumerable<SelectListItem> CityValues { get { return new[] { new SelectListItem {Value = "Value1", Text = "Text1"}, new SelectListItem {Value = "Value2", Text = "Text2"}, new SelectListItem {Value = "Value3", Text = "Text3"} }; } } } Context public class EFDbContext : DbContext{ public EFDbContext(string connectionString) { Database.Connection.ConnectionString = connectionString; } public DbSet<Book> Books { get; set; } public DbSet<Student> Students { get; set; } public DbSet<City> Cities { get; set; } protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Book>() .HasMany(x => x.Students).WithMany(x => x.Books) .Map(x => x.MapLeftKey("BookId").MapRightKey("StudentId").ToTable("StudentBooks")); modelBuilder.Entity<City>() .HasMany(x => x.Students).WithMany(x => x.Cities) .Map(x => x.MapLeftKey("CityId").MapRightKey("StudentId").ToTable("StudentCities")); } } Controller public ActionResult Create() { return View(); } [HttpPost] public ActionResult Create() { //I don't understand how I can save values to db context.SaveChanges(); return RedirectToAction("Index"); } View @model UsingEFNew.ViewModels.StudentBookCityViewModel @using (Html.BeginForm()) { Your Name: @Html.TextBoxFor(model = model.StudentName) <div>Genre:</div> <div> @Html.DropDownListFor(model => model.City, Model.CityValues) </div> <div>Books:</div> <div> @for (int i = 0; i < Model.Books.Count; i++) { <div> @Html.HiddenFor(x => x.Books[i].BookId) @Html.CheckBoxFor(x => x.Books[i].IsSelected) @Html.LabelFor(x => x.Books[i].IsSelected, Model.Books[i].BookName) </div> } </div> <div> <input id="btnSubmit" type="submit" value="Submit" /> </div> </div> }

    Read the article

  • VB.NET IF() Coalesce and “Expression Expected” Error

    - by Jeff Widmer
    I am trying to use the equivalent of the C# “??” operator in some VB.NET code that I am working in. This StackOverflow article for “Is there a VB.NET equivalent for C#'s ?? operator?” explains the VB.NET IF() statement syntax which is exactly what I am looking for... and I thought I was going to be done pretty quickly and could move on. But after implementing the IF() statement in my code I started to receive this error: Compiler Error Message: BC30201: Expression expected. And no matter how I tried using the “IF()” statement, whenever I tried to visit the aspx page that I was working on I received the same error. This other StackOverflow article Using VB.NET If vs. IIf in binding/rendering expression indicated that the VB.NET IF() operator was not available until VS2008 or .NET Framework 3.5.  So I checked the Web Application project properties but it was targeting the .NET Framework 3.5: So I was still not understanding what was going on, but then I noticed the version information in the detailed compiler output of the error page: This happened to be a C# project, but with an ASPX page with inline VB.NET code (yes, it is strange to have that but that is the project I am working on).  So even though the project file was targeting the .NET Framework 3.5, the ASPX page was being compiled using the .NET Framework 2.0.  But why?  Where does this get set?  How does ASP.NET know which version of the compiler to use for the inline code? For this I turned to the web.config.  Here is the system.codedom/compilers section that was in the web.config for this project: <system.codedom>     <compilers>         <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">             <providerOption name="CompilerVersion" value="v3.5" />             <providerOption name="WarnAsError" value="false" />         </compiler>     </compilers> </system.codedom> Keep in mind that this is a C# web application project file but my aspx file has inline VB.NET code.  The web.config does not have any information for how to compile for VB.NET so it defaults to .NET 2.0 (instead of 3.5 which is what I need). So the web.config needed to include the VB.NET compiler option.  Here it is with both the C# and VB.NET options (I copied the VB.NET config from a new VB.NET Web Application project file).     <system.codedom>         <compilers>             <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">                 <providerOption name="CompilerVersion" value="v3.5" />                 <providerOption name="WarnAsError" value="false" />             </compiler>       <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" warningLevel="4" type="Microsoft.VisualBasic.VBCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">         <providerOption name="CompilerVersion" value="v3.5"/>         <providerOption name="OptionInfer" value="true"/>         <providerOption name="WarnAsError" value="false"/>       </compiler>     </compilers>     </system.codedom>   So the inline VB.NET code on my aspx page was being compiled using the .NET Framework 2.0 when it really needed to be compiled with the .NET Framework 3.5 compiler in order to take advantage of the VB.NET IF() coalesce statement.  Without the VB.NET web.config compiler option, the default is to compile using the .NET Framework 2.0 and the VB.NET IF() coalesce statement does not exist (at least in the form that I want it in).  FYI, there is an older IF statement in VB.NET 2.0 compiler which is why it is giving me the unusual “Expression Expected” error message – see this article for when VB.NET got the new updated version. EDIT (2011-06-20): I had made a wrong assumption in the first version of this blog post.  After a little more research and investigation I was able to figure out that the issue was in the web.config and not with the IIS App Pool.  Thanks to the comment from James which forced me to look into this again.

    Read the article

  • Asp.net ADO.NET Entity Framework or ADO.NET

    - by sharru
    I'm starting a new project based on ASP.NET and Windows server. The application is planned to be pretty big and serve large amount of clients pulling and updating high freq. changing data. I have previously created projects with Linq-To-Sql or with Ado.Net. My plan for this project is to use VS2010 and the new EF4 framework. It would be great to hear other programmers options about development with Entity Framework Pros and cons from previous experience? Do you think EF4 is ready for production? Should i take the risk or just stick with plain old good ADO.NET?

    Read the article

  • ADO.NET Entity Framework or ADO.NET

    - by sharru
    I'm starting a new project based on ASP.NET and Windows server. The application is planned to be pretty big and serve large amount of clients pulling and updating high freq. changing data. I have previously created projects with Linq-To-Sql or with Ado.Net. My plan for this project is to use VS2010 and the new EF4 framework. It would be great to hear other programmers options about development with Entity Framework Pros and cons from previous experience? Do you think EF4 is ready for production? Should i take the risk or just stick with plain old good ADO.NET?

    Read the article

  • LLBLGen Pro feature highlights: automatic element name construction

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) One of the things one might take for granted but which has a huge impact on the time spent in an entity modeling environment is the way the system creates names for elements out of the information provided, in short: automatic element name construction. Element names are created in both directions of modeling: database first and model first and the more names the system can create for you without you having to rename them, the better. LLBLGen Pro has a rich, fine grained system for creating element names out of the meta-data available, which I'll describe more in detail below. First the model element related element naming features are highlighted, in the section Automatic model element naming features and after that I'll go more into detail about the relational model element naming features LLBLGen Pro has to offer in the section Automatic relational model element naming features. Automatic model element naming features When working database first, the element names in the model, e.g. entity names, entity field names and so on, are in general determined from the relational model element (e.g. table, table field) they're mapped on, as the model elements are reverse engineered from these relational model elements. It doesn't take rocket science to automatically name an entity Customer if the entity was created after reverse engineering a table named Customer. It gets a little trickier when the entity which was created by reverse engineering a table called TBL_ORDER_LINES has to be named 'OrderLine' automatically. Automatic model element naming also takes into effect with model first development, where some settings are used to provide you with a default name, e.g. in the case of navigator name creation when you create a new relationship. The features below are available to you in the Project Settings. Open Project Settings on a loaded project and navigate to Conventions -> Element Name Construction. Strippers! The above example 'TBL_ORDER_LINES' shows that some parts of the table name might not be needed for name creation, in this case the 'TBL_' prefix. Some 'brilliant' DBAs even add suffixes to table names, fragments you might not want to appear in the entity names. LLBLGen Pro offers you to define both prefix and suffix fragments to strip off of table, view, stored procedure, parameter, table field and view field names. In the example above, the fragment 'TBL_' is a good candidate for such a strip pattern. You can specify more than one pattern for e.g. the table prefix strip pattern, so even a really messy schema can still be used to produce clean names. Underscores Be Gone Another thing you might get rid of are underscores. After all, most naming schemes for entities and their classes use PasCal casing rules and don't allow for underscores to appear. LLBLGen Pro can automatically strip out underscores for you. It's an optional feature, so if you like the underscores, you're not forced to see them go: LLBLGen Pro will leave them alone when ordered to to so. PasCal everywhere... or not, your call LLBLGen Pro can automatically PasCal case names on word breaks. It determines word breaks in a couple of ways: a space marks a word break, an underscore marks a word break and a case difference marks a word break. It will remove spaces in all cases, and based on the underscore removal setting, keep or remove the underscores, and upper-case the first character of a word break fragment, and lower case the rest. Say, we keep the defaults, which is remove underscores and PasCal case always and strip the TBL_ fragment, we get with our example TBL_ORDER_LINES, after stripping TBL_ from the table name two word fragments: ORDER and LINES. The underscores are removed, the first character of each fragment is upper-cased, the rest lower-cased, so this results in OrderLines. Almost there! Pluralization and Singularization In general entity names are singular, like Customer or OrderLine so LLBLGen Pro offers a way to singularize the names. This will convert OrderLines, the result we got after the PasCal casing functionality, into OrderLine, exactly what we're after. Show me the patterns! There are other situations in which you want more flexibility. Say, you have an entity Customer and an entity Order and there's a foreign key constraint defined from the target of Order and the target of Customer. This foreign key constraint results in a 1:n relationship between the entities Customer and Order. A relationship has navigators mapped onto the relationship in both entities the relationship is between. For this particular relationship we'd like to have Customer as navigator in Order and Orders as navigator in Customer, so the relationship becomes Customer.Orders 1:n Order.Customer. To control the naming of these navigators for the various relationship types, LLBLGen Pro defines a set of patterns which allow you, using macros, to define how the auto-created navigator names will look like. For example, if you rather have Customer.OrderCollection, you can do so, by changing the pattern from {$EndEntityName$P} to {$EndEntityName}Collection. The $P directive makes sure the name is pluralized, which is not what you want if you're going for <EntityName>Collection, hence it's removed. When working model first, it's a given you'll create foreign key fields along the way when you define relationships. For example, you've defined two entities: Customer and Order, and they have their fields setup properly. Now you want to define a relationship between them. This will automatically create a foreign key field in the Order entity, which reflects the value of the PK field in Customer. (No worries if you hate the foreign key fields in your classes, on NHibernate and EF these can be hidden in the generated code if you want to). A specific pattern is available for you to direct LLBLGen Pro how to name this foreign key field. For example, if all your entities have Id as PK field, you might want to have a different name than Id as foreign key field. In our Customer - Order example, you might want to have CustomerId instead as foreign key name in Order. The pattern for foreign key fields gives you that freedom. Abbreviations... make sense of OrdNr and friends I already described word breaks in the PasCal casing paragraph, how they're used for the PasCal casing in the constructed name. Word breaks are used for another neat feature LLBLGen Pro has to offer: abbreviation support. Burt, your friendly DBA in the dungeons below the office has a hate-hate relationship with his keyboard: he can't stand it: typing is something he avoids like the plague. This has resulted in tables and fields which have names which are very short, but also very unreadable. Example: our TBL_ORDER_LINES example has a lovely field called ORD_NR. What you would like to see in your fancy new OrderLine entity mapped onto this table is a field called OrderNumber, not a field called OrdNr. What you also like is to not have to rename that field manually. There are better things to do with your time, after all. LLBLGen Pro has you covered. All it takes is to define some abbreviation - full word pairs and during reverse engineering model elements from tables/views, LLBLGen Pro will take care of the rest. For the ORD_NR field, you need two values: ORD as abbreviation and Order as full word, and NR as abbreviation and Number as full word. LLBLGen Pro will now convert every word fragment found with the word breaks which matches an abbreviation to the given full word. They're case sensitive and can be found in the Project Settings: Navigate to Conventions -> Element Name Construction -> Abbreviations. Automatic relational model element naming features Not everyone works database first: it may very well be the case you start from scratch, or have to add additional tables to an existing database. For these situations, it's key you have the flexibility that you can control the created table names and table fields without any work: let the designer create these names based on the entity model you defined and a set of rules. LLBLGen Pro offers several features in this area, which are described in more detail below. These features are found in Project Settings: navigate to Conventions -> Model First Development. Underscores, welcome back! Not every database is case insensitive, and not every organization requires PasCal cased table/field names, some demand all lower or all uppercase names with underscores at word breaks. Say you create an entity model with an entity called OrderLine. You work with Oracle and your organization requires underscores at word breaks: a table created from OrderLine should be called ORDER_LINE. LLBLGen Pro allows you to do that: with a simple checkbox you can order LLBLGen Pro to insert an underscore at each word break for the type of database you're working with: case sensitive or case insensitive. Checking the checkbox Insert underscore at word break case insensitive dbs will let LLBLGen Pro create a table from the entity called Order_Line. Half-way there, as there are still lower case characters there and you need all caps. No worries, see below Casing directives so everyone can sleep well at night For case sensitive databases and case insensitive databases there is one setting for each of them which controls the casing of the name created from a model element (e.g. a table created from an entity definition using the auto-mapping feature). The settings can have the following values: AsProjectElement, AllUpperCase or AllLowerCase. AsProjectElement is the default, and it keeps the casing as-is. In our example, we need to get all upper case characters, so we select AllUpperCase for the setting for case sensitive databases. This will produce the name ORDER_LINE. Sequence naming after a pattern Some databases support sequences, and using model-first development it's key to have sequences, when needed, to be created automatically and if possible using a name which shows where they're used. Say you have an entity Order and you want to have the PK values be created by the database using a sequence. The database you're using supports sequences (e.g. Oracle) and as you want all numeric PK fields to be sequenced, you have enabled this by the setting Auto assign sequences to integer pks. When you're using LLBLGen Pro's auto-map feature, to create new tables and constraints from the model, it will create a new table, ORDER, based on your settings I previously discussed above, with a PK field ID and it also creates a sequence, SEQ_ORDER, which is auto-assigns to the ID field mapping. The name of the sequence is created by using a pattern, defined in the Model First Development setting Sequence pattern, which uses plain text and macros like with the other patterns previously discussed. Grouping and schemas When you start from scratch, and you're working model first, the tables created by LLBLGen Pro will be in a catalog and / or schema created by LLBLGen Pro as well. If you use LLBLGen Pro's grouping feature, which allows you to group entities and other model elements into groups in the project (described in a future blog post), you might want to have that group name reflected in the schema name the targets of the model elements are in. Say you have a model with a group CRM and a group HRM, both with entities unique for these groups, e.g. Employee in HRM, Customer in CRM. When auto-mapping this model to create tables, you might want to have the table created for Employee in the HRM schema but the table created for Customer in the CRM schema. LLBLGen Pro will do just that when you check the setting Set schema name after group name to true (default). This gives you total control over where what is placed in the database from your model. But I want plural table names... and TBL_ prefixes! For now we follow best practices which suggest singular table names and no prefixes/suffixes for names. Of course that won't keep everyone happy, so we're looking into making it possible to have that in a future version. Conclusion LLBLGen Pro offers a variety of options to let the modeling system do as much work for you as possible. Hopefully you enjoyed this little highlight post and that it has given you new insights in the smaller features available to you in LLBLGen Pro, ones you might not have thought off in the first place. Enjoy!

    Read the article

  • June 26th Links: ASP.NET, ASP.NET MVC, .NET and NuGet

    - by ScottGu
    Here is the latest in my link-listing series.  Also check out my Best of 2010 Summary for links to 100+ other posts I’ve done in the last year. [I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET Introducing new ASP.NET Universal Providers: Great post from Scott Hanselman on the new System.Web.Providers we are working on.  This release delivers new ASP.NET Membership, Role Management, Session, Profile providers that work with SQL Server, SQL CE and SQL Azure. CSS Sprites and the ASP.NET Sprite and Image Optimization Library: Great post from Scott Mitchell that talks about a free library for ASP.NET that you can use to optimize your CSS and images to reduce HTTP requests and speed up your site. Better HTML5 Support for the VS 2010 Editor: Another great post from Scott Hanselman on an update several people on my team did that enables richer HTML5 editing support within Visual Studio 2010. Install the Ajax Control Toolkit from NuGet: Nice post by Stephen Walther on how you can now use NuGet to install the Ajax Control Toolkit within your applications.  This makes it much easier to reference and use. May 2011 Release of the Ajax Control Toolkit: Another great post from Stephen Walther that talks about the May release of the Ajax Control Toolkit. It includes a bunch of nice enhancements and fixes. SassAndCoffee 0.9 Released: Paul Betts blogs about the latest release of his SassAndCoffee extension (available via NuGet). It enables you to easily use Sass and Coffeescript within your ASP.NET applications (both MVC and Webforms). ASP.NET MVC ASP.NET MVC Mini-Profiler: The folks at StackOverflow.com (a great site built with ASP.NET MVC) have released a nice (free) profiler they’ve built that enables you to easily profile your ASP.NET MVC 3 sites and tune them for performance.  Globalization, Internationalization and Localization in ASP.NET MVC 3: Great post from Scott Hanselman on how to enable internationalization, globalization and localization support within your ASP.NET MVC 3 and jQuery solutions. Precompile your MVC Razor Views: Great post from David Ebbo that discusses a new Razor Generator tool that enables you to pre-compile your razor view templates as assemblies – which enables a bunch of cool scenarios. Unit Testing Razor Views: Nice post from David Ebbo that shows how to use his new Razor Generator to enable unit testing of razor view templates with ASP.NET MVC. Bin Deploying ASP.NET MVC 3: Nice post by Phil Haack that covers a cool feature added to VS 2010 SP1 that makes it really easy to \bin deploy ASP.NET MVC and Razor within your application. This enables you to easily deploy the app to servers that don’t have ASP.NET MVC 3 installed. .NET Table Splitting with EF 4.1 Code First: Great post from Morteza Manavi that discusses how to split up a single database table across multiple EF entity classes.  This shows off some of the power behind EF 4.1 and is very useful when working with legacy database schemas. Choosing the Right Collection Class: Nice post from James Michael Hare that talks about the different collection class options available within .NET.  A nice overview for people who haven’t looked at all of the support now built into the framework. Little Wonders: Empty(), DefaultIfEmpty() and Count() helper methods: Another in James Michael Hare’s excellent series on .NET/C# “Little Wonders”.  This post covers some of the great helper methods now built-into .NET that make coding even easier. NuGet NuGet 1.4 Released: Learn all about the latest release of NuGet – which includes a bunch of cool new capabilities.  It takes only seconds to update to it – go for it! NuGet in Depth: Nice presentation from Scott Hanselman all about NuGet and some of the investments we are making to enable a better open source ecosystem within .NET. NuGet for the Enterprise – NuGet in a Continuous Integration Automated Build System: Great post from Scott Hanselman on how to integrate NuGet within enterprise build environments and enable it with CI solutions. Hope this helps, Scott

    Read the article

  • Announcing the Release of Visual Studio 2013 and Great Improvements to ASP.NET and Entity Framework

    - by ScottGu
    Today we released VS 2013 and .NET 4.5.1. These releases include a ton of great improvements, and include some fantastic enhancements to ASP.NET and the Entity Framework.  You can download and start using them now. Below are details on a few of the great ASP.NET, Web Development, and Entity Framework improvements you can take advantage of with this release.  Please visit http://www.asp.net/vnext for additional release notes, documentation, and tutorials. One ASP.NET With the release of Visual Studio 2013, we have taken a step towards unifying the experience of using the different ASP.NET sub-frameworks (Web Forms, MVC, Web API, SignalR, etc), and you can now easily mix and match the different ASP.NET technologies you want to use within a single application. When you do a File-New Project with VS 2013 you’ll now see a single ASP.NET Project option: Selecting this project will bring up an additional dialog that allows you to start with a base project template, and then optionally add/remove the technologies you want to use in it.  For example, you could start with a Web Forms template and add Web API or Web Forms support for it, or create a MVC project and also enable Web Forms pages within it: This makes it easy for you to use any ASP.NET technology you want within your apps, and take advantage of any feature across the entire ASP.NET technology span. Richer Authentication Support The new “One ASP.NET” project dialog also includes a new Change Authentication button that, when pushed, enables you to easily change the authentication approach used by your applications – and makes it much easier to build secure applications that enable SSO from a variety of identity providers.  For example, when you start with the ASP.NET Web Forms or MVC templates you can easily add any of the following authentication options to the application: No Authentication Individual User Accounts (Single Sign-On support with FaceBook, Twitter, Google, and Microsoft ID – or Forms Auth with ASP.NET Membership) Organizational Accounts (Single Sign-On support with Windows Azure Active Directory ) Windows Authentication (Active Directory in an intranet application) The Windows Azure Active Directory support is particularly cool.  Last month we updated Windows Azure Active Directory so that developers can now easily create any number of Directories using it (for free and deployed within seconds).  It now takes only a few moments to enable single-sign-on support within your ASP.NET applications against these Windows Azure Active Directories.  Simply choose the “Organizational Accounts” radio button within the Change Authentication dialog and enter the name of your Windows Azure Active Directory to do this: This will automatically configure your ASP.NET application to use Windows Azure Active Directory and register the application with it.  Now when you run the app your users can easily and securely sign-in using their Active Directory credentials within it – regardless of where the application is hosted on the Internet. For more information about the new process for creating web projects, see Creating ASP.NET Web Projects in Visual Studio 2013. Responsive Project Templates with Bootstrap The new default project templates for ASP.NET Web Forms, MVC, Web API and SPA are built using Bootstrap. Bootstrap is an open source CSS framework that helps you build responsive websites which look great on different form factors such as mobile phones, tables and desktops. For example in a browser window the home page created by the MVC template looks like the following: When you resize the browser to a narrow window to see how it would like on a phone, you can notice how the contents gracefully wrap around and the horizontal top menu turns into an icon: When you click the menu-icon above it expands into a vertical menu – which enables a good navigation experience for small screen real-estate devices: We think Bootstrap will enable developers to build web applications that work even better on phones, tablets and other mobile devices – and enable you to easily build applications that can leverage the rich ecosystem of Bootstrap CSS templates already out there.  You can learn more about Bootstrap here. Visual Studio Web Tooling Improvements Visual Studio 2013 includes a new, much richer, HTML editor for Razor files and HTML files in web applications. The new HTML editor provides a single unified schema based on HTML5. It has automatic brace completion, jQuery UI and AngularJS attribute IntelliSense, attribute IntelliSense Grouping, and other great improvements. For example, typing “ng-“ on an HTML element will show the intellisense for AngularJS: This support for AngularJS, Knockout.js, Handlebars and other SPA technologies in this release of ASP.NET and VS 2013 makes it even easier to build rich client web applications: The screen shot below demonstrates how the HTML editor can also now inspect your page at design-time to determine all of the CSS classes that are available. In this case, the auto-completion list contains classes from Bootstrap’s CSS file. No more guessing at which Bootstrap element names you need to use: Visual Studio 2013 also comes with built-in support for both CoffeeScript and LESS editing support. The LESS editor comes with all the cool features from the CSS editor and has specific Intellisense for variables and mixins across all the LESS documents in the @import chain. Browser Link – SignalR channel between browser and Visual Studio The new Browser Link feature in VS 2013 lets you run your app within multiple browsers on your dev machine, connect them to Visual Studio, and simultaneously refresh all of them just by clicking a button in the toolbar. You can connect multiple browsers (including IE, FireFox, Chrome) to your development site, including mobile emulators, and click refresh to refresh all the browsers all at the same time.  This makes it much easier to easily develop/test against multiple browsers in parallel. Browser Link also exposes an API to enable developers to write Browser Link extensions.  By enabling developers to take advantage of the Browser Link API, it becomes possible to create very advanced scenarios that crosses boundaries between Visual Studio and any browser that’s connected to it. Web Essentials takes advantage of the API to create an integrated experience between Visual Studio and the browser’s developer tools, remote controlling mobile emulators and a lot more. You will see us take advantage of this support even more to enable really cool scenarios going forward. ASP.NET Scaffolding ASP.NET Scaffolding is a new code generation framework for ASP.NET Web applications. It makes it easy to add boilerplate code to your project that interacts with a data model. In previous versions of Visual Studio, scaffolding was limited to ASP.NET MVC projects. With Visual Studio 2013, you can now use scaffolding for any ASP.NET project, including Web Forms. When using scaffolding, we ensure that all required dependencies are automatically installed for you in the project. For example, if you start with an ASP.NET Web Forms project and then use scaffolding to add a Web API Controller, the required NuGet packages and references to enable Web API are added to your project automatically.  To do this, just choose the Add->New Scaffold Item context menu: Support for scaffolding async controllers uses the new async features from Entity Framework 6. ASP.NET Identity ASP.NET Identity is a new membership system for ASP.NET applications that we are introducing with this release. ASP.NET Identity makes it easy to integrate user-specific profile data with application data. ASP.NET Identity also allows you to choose the persistence model for user profiles in your application. You can store the data in a SQL Server database or another data store, including NoSQL data stores such as Windows Azure Storage Tables. ASP.NET Identity also supports Claims-based authentication, where the user’s identity is represented as a set of claims from a trusted issuer. Users can login by creating an account on the website using username and password, or they can login using social identity providers (such as Microsoft Account, Twitter, Facebook, Google) or using organizational accounts through Windows Azure Active Directory or Active Directory Federation Services (ADFS). To learn more about how to use ASP.NET Identity visit http://www.asp.net/identity.  ASP.NET Web API 2 ASP.NET Web API 2 has a bunch of great improvements including: Attribute routing ASP.NET Web API now supports attribute routing, thanks to a contribution by Tim McCall, the author of http://attributerouting.net. With attribute routing you can specify your Web API routes by annotating your actions and controllers like this: OAuth 2.0 support The Web API and Single Page Application project templates now support authorization using OAuth 2.0. OAuth 2.0 is a framework for authorizing client access to protected resources. It works for a variety of clients including browsers and mobile devices. OData Improvements ASP.NET Web API also now provides support for OData endpoints and enables support for both ATOM and JSON-light formats. With OData you get support for rich query semantics, paging, $metadata, CRUD operations, and custom actions over any data source. Below are some of the specific enhancements in ASP.NET Web API 2 OData. Support for $select, $expand, $batch, and $value Improved extensibility Type-less support Reuse an existing model OWIN Integration ASP.NET Web API now fully supports OWIN and can be run on any OWIN capable host. With OWIN integration, you can self-host Web API in your own process alongside other OWIN middleware, such as SignalR. For more information, see Use OWIN to Self-Host ASP.NET Web API. More Web API Improvements In addition to the features above there have been a host of other features in ASP.NET Web API, including CORS support Authentication Filters Filter Overrides Improved Unit Testability Portable ASP.NET Web API Client To learn more go to http://www.asp.net/web-api/ ASP.NET SignalR 2 ASP.NET SignalR is library for ASP.NET developers that dramatically simplifies the process of adding real-time web functionality to your applications. Real-time web functionality is the ability to have server-side code push content to connected clients instantly as it becomes available. SignalR 2.0 introduces a ton of great improvements. We’ve added support for Cross-Origin Resource Sharing (CORS) to SignalR 2.0. iOS and Android support for SignalR have also been added using the MonoTouch and MonoDroid components from the Xamarin library (for more information on how to use these additions, see the article Using Xamarin Components from the SignalR wiki). We’ve also added support for the Portable .NET Client in SignalR 2.0 and created a new self-hosting package. This change makes the setup process for SignalR much more consistent between web-hosted and self-hosted SignalR applications. To learn more go to http://www.asp.net/signalr. ASP.NET MVC 5 The ASP.NET MVC project templates integrate seamlessly with the new One ASP.NET experience and enable you to integrate all of the above ASP.NET Web API, SignalR and Identity improvements. You can also customize your MVC project and configure authentication using the One ASP.NET project creation wizard. The MVC templates have also been updated to use ASP.NET Identity and Bootstrap as well. An introductory tutorial to ASP.NET MVC 5 can be found at Getting Started with ASP.NET MVC 5. This release of ASP.NET MVC also supports several nice new MVC-specific features including: Authentication filters: These filters allow you to specify authentication logic per-action, per-controller or globally for all controllers. Attribute Routing: Attribute Routing allows you to define your routes on actions or controllers. To learn more go to http://www.asp.net/mvc Entity Framework 6 Improvements Visual Studio 2013 ships with Entity Framework 6, which bring a lot of great new features to the data access space: Async and Task<T> Support EF6’s new Async Query and Save support enables you to perform asynchronous data access and take advantage of the Task<T> support introduced in .NET 4.5 within data access scenarios.  This allows you to free up threads that might otherwise by blocked on data access requests, and enable them to be used to process other requests whilst you wait for the database engine to process operations. When the database server responds the thread will be re-queued within your ASP.NET application and execution will continue.  This enables you to easily write significantly more scalable server code. Here is an example ASP.NET WebAPI action that makes use of the new EF6 async query methods: Interception and Logging Interception and SQL logging allows you to view – or even change – every command that is sent to the database by Entity Framework. This includes a simple, human readable log – which is great for debugging – as well as some lower level building blocks that give you access to the command and results. Here is an example of wiring up the simple log to Debug in the constructor of an MVC controller: Custom Code-First Conventions The new Custom Code-First Conventions enable bulk configuration of a Code First model – reducing the amount of code you need to write and maintain. Conventions are great when your domain classes don’t match the Code First conventions. For example, the following convention configures all properties that are called ‘Key’ to be the primary key of the entity they belong to. This is different than the default Code First convention that expects Id or <type name>Id. Connection Resiliency The new Connection Resiliency feature in EF6 enables you to register an execution strategy to handle – and potentially retry – failed database operations. This is especially useful when deploying to cloud environments where dropped connections become more common as you traverse load balancers and distributed networks. EF6 includes a built-in execution strategy for SQL Azure that knows about retryable exception types and has some sensible – but overridable – defaults for the number of retries and time between retries when errors occur. Registering it is simple using the new Code-Based Configuration support: These are just some of the new features in EF6. You can visit the release notes section of the Entity Framework site for a complete list of new features. Microsoft OWIN Components Open Web Interface for .NET (OWIN) defines an open abstraction between .NET web servers and web applications, and the ASP.NET “Katana” project brings this abstraction to ASP.NET. OWIN decouples the web application from the server, making web applications host-agnostic. For example, you can host an OWIN-based web application in IIS or self-host it in a custom process. For more information about OWIN and Katana, see What's new in OWIN and Katana. Summary Today’s Visual Studio 2013, ASP.NET and Entity Framework release delivers some fantastic new features that streamline your web development lifecycle. These feature span from server framework to data access to tooling to client-side HTML development.  They also integrate some great open-source technology and contributions from our developer community. Download and start using them today! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Working with Temporal Data in SQL Server

    - by Dejan Sarka
    My third Pluralsight course, Working with Temporal Data in SQL Server, is published. I am really proud on the second part of the course, where I discuss optimization of temporal queries. This was a nearly impossible task for decades. First solutions appeared only lately. I present all together six solutions (and one more that is not a solution), and I invented four of them. http://pluralsight.com/training/Courses/TableOfContents/working-with-temporal-data-sql-server

    Read the article

  • Explained: EF 6 and “Could not determine storage version; a valid storage connection or a version hint is required.”

    - by Ken Cox [MVP]
    I have a legacy ASP.NET 3.5 web site that I’ve upgraded to a .NET 4 web application. At the same time, I upgraded to Entity Framework 6. Suddenly one of the pages returned the following error: [ArgumentException: Could not determine storage version; a valid storage connection or a version hint is required.]    System.Data.SqlClient.SqlVersionUtils.GetSqlVersion(String versionHint) +11372412    System.Data.SqlClient.SqlProviderServices.GetDbProviderManifest(String versionHint) +91    System.Data.Common.DbProviderServices.GetProviderManifest(String manifestToken) +92 [ProviderIncompatibleException: The provider did not return a ProviderManifest instance.]    System.Data.Common.DbProviderServices.GetProviderManifest(String manifestToken) +11431433    System.Data.Metadata.Edm.Loader.InitializeProviderManifest(Action`3 addError) +11370982    System.Data.EntityModel.SchemaObjectModel.Schema.HandleAttribute(XmlReader reader) +216 A search of the error message didn’t turn up anything helpful except that someone mentioned that the error messages was bogus in his case. The page in question uses the ASP.NET EntityDataSource control, consumed by a Telerik RadGrid. This is a fabulous combination for putting a huge amount of functionality on a page in a very short time. Unfortunately, the 6.0.1 release of EF6 doesn’t support EntityDataSource. According to the people in charge, support is planned but there’s no timeline for an EntityDataSource build that works with EF6.  I’m not sure what to do in the meantime. Should I back out EF6 or manually wire up the RadGrid? The upshot is that you might want to rethink plans to upgrade to Entity Framework 6 for Web forms projects if they rely on that handy control. It might also help to spend a User voice vote here:  http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/3702890-support-for-asp-net-entitydatasource-and-dynamicda

    Read the article

  • Weekend Entity Framework Class in Dallas...

    - by [email protected]
    Zeeshan Nirani, MVP in the Data Programability Group, co-author of the upcoming Entity Framework Recipies book, is teaching a 6 week class on Entity Framework 4.0 at Collin Community College, beginning May 22nd. The class will meet each Saturday morning from 9 am to 1. There is probably nobody in the Metroplex area that knows the Entity Framework as initimately as Zeeshan. Go and sign-up for this course NOW and consider yourself lucky to have the opportunity to attend. You WILL learn the Entity Framework which will be CRITICAL to your success in Microsoft development, as MSFT has made this framework one of their core pieces moving forward.   Contact Zeeshan at [email protected] for more details.      

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >